Back to Search Start Over

Semi-Blind Post-Equalizer SINR Estimation and Dual CSI Feedback for Radar-Cellular Coexistence.

Authors :
Rao, Raghunandan M.
Marojevic, Vuk
Reed, Jeffrey H.
Source :
IEEE Transactions on Vehicular Technology. Sep2020, Vol. 69 Issue 9, p9720-9735. 16p.
Publication Year :
2020

Abstract

Current cellular systems use pilot-aided statistical-channel state information (S-CSI) estimation and limited feedback schemes to aid in link adaptation and scheduling decisions. However, in the presence of pulsed radar signals, pilot-aided S-CSI is inaccurate since interference statistics on pilot and non-pilot resources can be different. Moreover, the channel will be bimodal as a result of the periodic interference. In this paper, we propose a max-min heuristic to estimate the post-equalizer SINR in the case of non-pilot pulsed radar interference, and characterize its distribution as a function of noise variance and interference power. We observe that the proposed heuristic incurs low computational complexity, and is robust beyond a certain SINR threshold for different modulation schemes, especially for QPSK. This enables us to develop a comprehensive semi-blind framework to estimate the wideband SINR metric that is commonly used for S-CSI quantization in 3GPP Long-Term Evolution (LTE) and New Radio (NR) networks. Finally, we propose dual CSI feedback for practical radar-cellular spectrum sharing, to enable accurate CSI acquisition in the bimodal channel. We demonstrate significant improvements in throughput, block error rate and retransmission-induced latency for LTE-Advanced Pro when compared to conventional pilot-aided S-CSI estimation and limited feedback schemes. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00189545
Volume :
69
Issue :
9
Database :
Academic Search Index
Journal :
IEEE Transactions on Vehicular Technology
Publication Type :
Academic Journal
Accession number :
146472697
Full Text :
https://doi.org/10.1109/TVT.2020.3001911