Back to Search Start Over

WETMETH 1.0: A new wetland methane model for implementation in Earth system models.

Authors :
Nzotungicimpaye, Claude-Michel
MacDougall, Andrew H.
Melton, Joe R.
Treat, Claire C.
Eby, Michael
Lesack, Lance F. W.
Zickfeld, Kirsten
Source :
Geoscientific Model Development Discussions. 10/17/2020, p1-40. 40p.
Publication Year :
2020

Abstract

Wetlands are the single largest natural source of methane (CH4), a powerful greenhouse gas affecting the global climate. In turn, wetland CH4 emissions are sensitive to changes in climate conditions such as temperature and precipitation shifts. However, biogeochemical processes regulating wetland CH4 emissions (namely microbial production and oxidation of CH4) are not routinely included in fully coupled Earth system models that simulate feedbacks between the physical climate, the carbon cycle, and other biogeochemical cycles. This paper introduces a process-based wetland CH4 model (WETMETH) developed for implementation in Earth system models and currently embedded in an Earth system model of intermediate complexity. Here we: (i) describe the wetland CH4 model; (ii) evaluate the model performance against available datasets and estimates from the literature; (iii) analyze the model sensitivity to perturbations of poorly constrained parameters. Historical simulations show that WETMETH is capable of reproducing mean annual emissions consistent with present-day estimates across spatial scales. For the 2008-2017 decade the model simulates global mean wetland emissions of 158.6 Tg CH4 yr<->1, of which 33.1 Tg CH4 yr<->1 are from wetlands north of 45° N. WETMETH is highly sensitive to parameters for the microbial oxidation of CH4, which is the least constrained process in the literature. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19919611
Database :
Academic Search Index
Journal :
Geoscientific Model Development Discussions
Publication Type :
Academic Journal
Accession number :
146543406
Full Text :
https://doi.org/10.5194/gmd-2020-176