Back to Search Start Over

Experimental Study on Energy Evolution and Storage Performances of Rock Material under Uniaxial Cyclic Compression.

Authors :
Gong, Fengqiang
Yan, Jingyi
Wang, Yunliang
Luo, Song
Source :
Shock & Vibration. 10/21/2020, p1-14. 14p.
Publication Year :
2020

Abstract

To investigate the energy evolution and storage performances of rock under uniaxial cyclic compression, a series of uniaxial cyclic loading and unloading compression tests were conducted on Green sandstone and Yueyang granite. Two methods for calculating the total input energy of the specimen under each cycle were proposed. One is based on the actual stress-strain curve of the specimen (ASC method); the other is based on the stress-strain envelope curve during the loading process (SEC method). The experimental results show that, for those two methods, the total input energy, elastic energy, and dissipated energy of the specimen show a quadratic function increasing trend with the increase of stress levels. Besides, the elastic energy increases linearly with the increase of total input energy for both methods, which confirms that the linear energy storage law is also applicable to rock materials under uniaxial cyclic loading and unloading compression conditions. Moreover, the uniaxial compression energy storage coefficient calculated by the SEC method is highly close to that obtained based on the single cycle loading and unloading test, which indicates that the uniaxial compression energy storage coefficient of rock can also be calculated by multiple cyclic loading and unloading test. In conclusion, the linear energy storage law is a basic physical property of rock materials, and the uniaxial compression energy storage coefficient is a physical index reflecting the energy storage capacity of rock materials. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10709622
Database :
Academic Search Index
Journal :
Shock & Vibration
Publication Type :
Academic Journal
Accession number :
146552525
Full Text :
https://doi.org/10.1155/2020/8842863