Back to Search Start Over

Forsythoside A inhibits adhesion and migration of monocytes to type II alveolar epithelial cells in lipopolysaccharide-induced acute lung injury through upregulating miR-124.

Authors :
Lu, Zi-bin
Liu, Shan-hong
Ou, Jin-ying
Cao, Hui-hui
Shi, Ling-zhu
Liu, Dong-yi
Tian, Chun-yang
Zheng, Yuan-ru
Zhou, Hong-ling
Liu, Jun-shan
Yu, Lin-zhong
Source :
Toxicology & Applied Pharmacology. Nov2020, Vol. 407, pN.PAG-N.PAG. 1p.
Publication Year :
2020

Abstract

Acute lung injury (ALI) is a severe disease for which effective drugs are still lacking at present. Forsythia suspensa is a traditional Chinese medicine commonly used to relieve respiratory symptoms in China, but its functional mechanisms remain unclear. Therefore, forsythoside A (FA), the active constituent of F. suspensa , was studied in the present study. Inflammation models of type II alveolar epithelial MLE-12 cells and BALB/c mice stimulated by lipopolysaccharide (LPS) were established to explore the effects of FA on ALI and the underlying mechanisms. We found that FA inhibited the production of monocyte chemoattractant protein-1 (MCP-1/CCL2) in LPS-stimulated MLE-12 cells in a dose-dependent manner. Moreover, FA decreased the adhesion and migration of monocytes to MLE-12 cells. Furthermore, miR-124 expression was upregulated after FA treatment. The luciferase report assay showed that miR-124 mimic reduced the activity of CCL2 in MLE-12 cells. However, the inhibitory effects of FA on CCL2 expression and monocyte adhesion and migration to MLE-12 cells were counteracted by treatment with a miR-124 inhibitor. Critically, FA ameliorated LPS-induced pathological damage, decreased the serum levels of tumor necrosis factor-α and interleukin-6, and inhibited CCL2 secretion and macrophage infiltration in lungs in ALI mice. Meanwhile, administration of miR-124 inhibitor attenuated the protective effects of FA. The present study suggests that FA attenuates LPS-induced adhesion and migration of monocytes to type II alveolar epithelial cells though upregulating miR-124, thereby inhibiting the expression of CCL2. These findings indicate that the potential application of FA is promising and that miR-124 mimics could also be used in the treatment of ALI. • Acute lung injury is a life-threatening disease without effective treatments now. • Forsythia suspense is used to treat pneumonia with its anti-inflammatory activity. • Forsythoside A is a natural product from Forsythia suspense. • Forsythoside A protects mice from lipopolysaccharide-induced acute lung injury. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0041008X
Volume :
407
Database :
Academic Search Index
Journal :
Toxicology & Applied Pharmacology
Publication Type :
Academic Journal
Accession number :
146558479
Full Text :
https://doi.org/10.1016/j.taap.2020.115252