Back to Search Start Over

Algorithms for cable-suspended payload sway damping by vertical motion of the pivot base.

Authors :
Kuře, Matěj
Bušek, Jaroslav
Vyhlídal, Tomáš
Niculescu, Silviu-Iulian
Source :
Mechanical Systems & Signal Processing. Feb2021, Vol. 149, pN.PAG-N.PAG. 1p.
Publication Year :
2021

Abstract

• Payload swing damping by the pivot vertical motion is feasible by nonlinear control. • The problem is not controllable in the linear system sense. • Exponential decay can be achieved by a controller derived by Lyapunov's second. • Time delay controller proofed practical as it allows phase shift compensation. The solution of a case study problem of suspended payload sway damping by moving a pivot base in vertical direction is presented. Unlike for the classical problem of anti-sway control for moving the base in the horizontal direction, implemented e.g. in cranes, a direct solution by using control feedback theory for linear systems is not possible. Once the model is linearized, it becomes uncontrollable. Thus, a derivation of a nonlinear controller is needed to solve the task. In this context, two solutions are proposed. The first solution is based on imposing harmonic motion of the base with double frequency of the payload natural frequency. Synchronization of the base and the payload deflection angle is done either by proportional time-delay controller or by proportional-derivative delay free controller. Secondly, the Lyapunov's second method is directly applied to derive a nonlinear controller. For both cases, balancing the dissipated energy, rules for determining equivalent damping are explicitly derived. After discussing and solving the corresponding implementation aspects, both simulation and experimental validations are performed. The experimental validation is performed on a simplified problem, where only horizontal motion is possible. The simulation based validation is performed on a nonlinear two dimensional model of a quadcopter carrying a suspended payload. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
08883270
Volume :
149
Database :
Academic Search Index
Journal :
Mechanical Systems & Signal Processing
Publication Type :
Academic Journal
Accession number :
146855778
Full Text :
https://doi.org/10.1016/j.ymssp.2020.107131