Back to Search Start Over

Deacidification by FhlA-dependent hydrogenase is involved in urease activity and urinary stone formation in uropathogenic Proteus mirabilis.

Authors :
Lin, Wen-Yuan
Liaw, Shwu-Jen
Source :
Scientific Reports. 11/11/2020, Vol. 10 Issue 1, pN.PAG-N.PAG. 1p.
Publication Year :
2020

Abstract

Proteus mirabilis is an important uropathogen, featured with urinary stone formation. Formate hydrogenlyase (FHL), consisting of formate dehydrogenase H and hydrogenase for converting proton to hydrogen, has been implicated in virulence. In this study, we investigated the role of P. mirabilis FHL hydrogenase and the FHL activator, FhlA. fhlA and hyfG (encoding hydrogenase large subunit) displayed a defect in acid resistance. fhlA and hyfG mutants displayed a delay in medium deacidification compared to wild-type and ureC mutant failed to deacidify the medium. In addition, loss of fhlA or hyfG decreased urease activity in the pH range of 5–8. The reduction of urease activities in fhlA and hyfG mutants subsided gradually over the pH range and disappeared at pH 9. Furthermore, mutation of fhlA or hyfG resulted in a decrease in urinary stone formation in synthetic urine. These indicate fhlA- and hyf-mediated deacidification affected urease activity and stone formation. Finally, fhlA and hyfG mutants exhibited attenuated colonization in mice. Altogether, we found expression of fhlA and hyf confers medium deacidification via facilitating urease activity, thereby urinary stone formation and mouse colonization. The link of acid resistance to urease activity provides a potential strategy for counteracting urinary tract infections by P. mirabilis. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20452322
Volume :
10
Issue :
1
Database :
Academic Search Index
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
146951469
Full Text :
https://doi.org/10.1038/s41598-020-76561-w