Back to Search Start Over

GORENSTEIN PROJECTIVE OBJECTS IN FUNCTOR CATEGORIES.

Authors :
KVAMME, SONDRE
Source :
Nagoya Mathematical Journal. Dec2020, Vol. 240, p1-41. 41p.
Publication Year :
2020

Abstract

Let $k$ be a commutative ring, let ${\mathcal{C}}$ be a small, $k$ -linear, Hom-finite, locally bounded category, and let ${\mathcal{B}}$ be a $k$ -linear abelian category. We construct a Frobenius exact subcategory ${\mathcal{G}}{\mathcal{P}}({\mathcal{G}}{\mathcal{P}}_{P}({\mathcal{B}}^{{\mathcal{C}}}))$ of the functor category ${\mathcal{B}}^{{\mathcal{C}}}$ , and we show that it is a subcategory of the Gorenstein projective objects ${\mathcal{G}}{\mathcal{P}}({\mathcal{B}}^{{\mathcal{C}}})$ in ${\mathcal{B}}^{{\mathcal{C}}}$. Furthermore, we obtain criteria for when ${\mathcal{G}}{\mathcal{P}}({\mathcal{G}}{\mathcal{P}}_{P}({\mathcal{B}}^{{\mathcal{C}}}))={\mathcal{G}}{\mathcal{P}}({\mathcal{B}}^{{\mathcal{C}}})$. We show in examples that this can be used to compute ${\mathcal{G}}{\mathcal{P}}({\mathcal{B}}^{{\mathcal{C}}})$ explicitly. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00277630
Volume :
240
Database :
Academic Search Index
Journal :
Nagoya Mathematical Journal
Publication Type :
Academic Journal
Accession number :
147015000
Full Text :
https://doi.org/10.1017/nmj.2018.44