Back to Search
Start Over
GORENSTEIN PROJECTIVE OBJECTS IN FUNCTOR CATEGORIES.
- Source :
-
Nagoya Mathematical Journal . Dec2020, Vol. 240, p1-41. 41p. - Publication Year :
- 2020
-
Abstract
- Let $k$ be a commutative ring, let ${\mathcal{C}}$ be a small, $k$ -linear, Hom-finite, locally bounded category, and let ${\mathcal{B}}$ be a $k$ -linear abelian category. We construct a Frobenius exact subcategory ${\mathcal{G}}{\mathcal{P}}({\mathcal{G}}{\mathcal{P}}_{P}({\mathcal{B}}^{{\mathcal{C}}}))$ of the functor category ${\mathcal{B}}^{{\mathcal{C}}}$ , and we show that it is a subcategory of the Gorenstein projective objects ${\mathcal{G}}{\mathcal{P}}({\mathcal{B}}^{{\mathcal{C}}})$ in ${\mathcal{B}}^{{\mathcal{C}}}$. Furthermore, we obtain criteria for when ${\mathcal{G}}{\mathcal{P}}({\mathcal{G}}{\mathcal{P}}_{P}({\mathcal{B}}^{{\mathcal{C}}}))={\mathcal{G}}{\mathcal{P}}({\mathcal{B}}^{{\mathcal{C}}})$. We show in examples that this can be used to compute ${\mathcal{G}}{\mathcal{P}}({\mathcal{B}}^{{\mathcal{C}}})$ explicitly. [ABSTRACT FROM AUTHOR]
- Subjects :
- *CATEGORIES (Mathematics)
*COMMUTATIVE rings
Subjects
Details
- Language :
- English
- ISSN :
- 00277630
- Volume :
- 240
- Database :
- Academic Search Index
- Journal :
- Nagoya Mathematical Journal
- Publication Type :
- Academic Journal
- Accession number :
- 147015000
- Full Text :
- https://doi.org/10.1017/nmj.2018.44