Back to Search Start Over

Mechanistic modeling and numerical simulation of axial flow catalytic reactor for naphtha reforming unit.

Authors :
Pishnamazi, Mahboubeh
Taghvaie Nakhjiri, Ali
Rezakazemi, Mashallah
Marjani, Azam
Shirazian, Saeed
Source :
PLoS ONE. 11/20/20/20, Vol. 15 Issue 11, p1-14. 14p.
Publication Year :
2020

Abstract

Naphtha catalytic reforming (NCR) process has been of tremendous attention all over the world owing to the significant requirement for high-quality gasoline. Industrialized naphtha reforming unit at oil refineries applies a series of fixed bed reactors (FBRs) to improve the quality of the low-octane hydrocarbons and convert them to more valuable products. The prominent purpose of this research is to understand the catalytic reactor of naphtha reforming unit. For this aim, an appropriate mechanistic modeling and its related CFD-based computational simulation is presented to predict the behavior of the system when the reactors are of the axial flow type. Also, the triangular meshing technique (TMT) is performed in this paper due to its brilliant ability to analyze the results of model's predictions along with improving the computational accuracy. Additionally, mesh independence analysis is done to find the optimum number of meshes needed for reaching the results convergence. Moreover, suitable kinetic and thermodynamic equations are derived based on Smith model to describe the NCR process. The results proved that the proceeding of NCR process inside the reactor significantly increased the concentration amount of aromatic materials, lighter ends and hydrogen, while deteriorated the concentration amount of naphthene and paraffin. Moreover, the pressure drop along the reactor length was achieved very low, which can be considered as one of the momentous advantages of NCR process. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19326203
Volume :
15
Issue :
11
Database :
Academic Search Index
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
147109421
Full Text :
https://doi.org/10.1371/journal.pone.0242343