Back to Search Start Over

Statistical hydrology for evaluating peatland water table sensitivity to simple environmental variables and climate changes application to the mid-latitude/altitude Frasne peatland (Jura Mountains, France).

Authors :
Bertrand, Guillaume
Ponçot, Alex
Pohl, Benjamin
Lhosmot, Alexandre
Steinmann, Marc
Johannet, Anne
Pinel, Sébastien
Caldirak, Huseyin
Artigue, Guillaume
Binet, Philippe
Bertrand, Catherine
Collin, Louis
Magnon, Geneviève
Gilbert, Daniel
Laggoun-Deffarge, Fatima
Toussaint, Marie-Laure
Source :
Science of the Total Environment. Feb2021, Vol. 754, pN.PAG-N.PAG. 1p.
Publication Year :
2021

Abstract

Peatlands are habitats for a range of fragile flora and fauna species. Their eco-physicochemical characteristics make them as outstanding global carbon and water storage systems. These ecosystems occupy 3% of the worldwide emerged land surface but represent 30% of the global organic soil carbon and 10% of the global fresh water volumes. In such systems, carbon speciation depends to a large extent on specific redox conditions which are mainly governed by the depth of the water table. Hence, understanding their hydrological variability, that conditions both their ecological and biogeochemical functions, is crucial for their management, especially when anticipating their future evolution under climate change. This study illustrates how long-term monitoring of basic hydro-meteorological parameters combined with statistical modeling can be used as a tool to evaluate i) the horizontal (type of peat), ii) vertical (acrotelm/catotelm continuum) and iii) future hydrological variability. Using cross-correlations between meteorological data (precipitation, potential evapotranspiration) and water table depth (WTD), we primarily highlight the spatial heterogeneity of hydrological reactivity across the Sphagnum -dominated Frasne peatland (French Jura Mountain). Then, a multiple linear regression model allows performing hydrological projections until 2100, according to regionalized IPCC RCP4.5 and 8.5 scenarios. Although WTD remains stable during the first half of 21th century, seasonal trends beyond 2050 show lower WTD in winter and markedly greater WTD in summer. In particular, after 2050, more frequent droughts in summer and autumn should occur, increasing WTD. These projections are completed with risk evaluations for peatland droughts until 2100 that appear to be increasing especially for transition seasons, i.e. May–June and September–October. Comparing these trends with previous evaluations of phenol concentrations in water throughout the vegetative period, considered as a proxy of plant functioning intensity, highlights that these hydrological modifications during transitional seasons could be a great ecological perturbation, especially by affecting Sphagnum metabolism. Unlabelled Image • Ten years of Frasne peatland hydrometeorological was performed. • Cross-correlation highlights spatial hydrological reactivity heterogeneities. • Multiple Linear Modeling was performed under RCP4.5 and RCP8.5 till 2100. • We observe a stable mean WTD under RCP4.5 but a significant increase under RCP8.5. • Seasonal variability of WTD is expected to increase, especially for RCP8.5. • Both RCP's imply greater summer WTD, potentially impacting the Sphagnum metabolism. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00489697
Volume :
754
Database :
Academic Search Index
Journal :
Science of the Total Environment
Publication Type :
Academic Journal
Accession number :
147118920
Full Text :
https://doi.org/10.1016/j.scitotenv.2020.141931