Back to Search Start Over

Non-Intrusive Load Monitoring via Deep Learning Based User Model and Appliance Group Model.

Authors :
Peng, Ce
Lin, Guoying
Zhai, Shaopeng
Ding, Yi
He, Guangyu
Source :
Energies (19961073). Nov2020, Vol. 13 Issue 21, p5629. 1p.
Publication Year :
2020

Abstract

Non-Intrusive Load Monitoring (NILM) increases awareness on user energy usage patterns. In this paper, an efficient and highly accurate NILM method is proposed featuring condensed representation, super-state and fusion of two deep learning based models. Condensed representation helps the two models perform more efficiently and preserve longer-term information, while super-state helps the model to learn correlations between appliances. The first model is a deep user model that learns user appliances usage patterns to predict the next appliance usage behavior based on past behaviors by capturing the dynamics of user behaviors history and appliances usage habits. The second model is a deep appliance group model that learns the characteristics of appliances with temporal and electrical information. These two models are then fused to perform NILM. The case study based on REFIT datasets demonstrates that the proposed NILM method outperforms two state-of-the-art benchmark methods. [ABSTRACT FROM AUTHOR]

Subjects

Subjects :
*DEEP learning
*ENERGY consumption

Details

Language :
English
ISSN :
19961073
Volume :
13
Issue :
21
Database :
Academic Search Index
Journal :
Energies (19961073)
Publication Type :
Academic Journal
Accession number :
147299964
Full Text :
https://doi.org/10.3390/en13215629