Back to Search Start Over

Field-Time Breakdown Characteristics of Air, N2, CO2, and SF6.

Authors :
Liu, Ting
Timoshkin, Igor V.
MacGregor, Scott J.
Wilson, Mark P.
Given, Martin J.
Bonifaci, Nelly
Hanna, Rachelle
Source :
IEEE Transactions on Plasma Science. Oct2020, Vol. 48 Issue 10, p3321-3331. 11p.
Publication Year :
2020

Abstract

The dielectric performance of gases in insulation systems used in high voltage power and pulsed power applications is a subject of intensive theoretical and experimental investigations. Transient breakdown processes in gases stressed with short, high-field impulses, have been studied for many decades. However, there are still significant gaps in the understanding of the main breakdown processes and mechanisms associated with fast transient breakdown processes in gases. This knowledge is important for the optimization of gaseous insulating systems and for the coordination of gaseous insulation in power and pulsed power apparatuses. This information is also required for the development of gas-filled components such as circuit breakers and plasma closing switches. This article is aimed at the analysis of the field-time breakdown characteristics of air, N2, CO2, and SF6, using kinetic and drift-diffusion approaches. The kinetic approach is based upon the avalanche-to-streamer transition criterion, while the fluid drift-diffusion model requires self-consistent numerical solution of the continuity equations for charged species, and the Poisson equation for the electric field. The time to breakdown as a function of the applied field was obtained for all investigated gases. The obtained analytical results agree well with the experimental data reported in the literature, which suggests that both approaches can be used for insulation coordination, and for the development of gas-insulated power and pulsed power systems and components. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00933813
Volume :
48
Issue :
10
Database :
Academic Search Index
Journal :
IEEE Transactions on Plasma Science
Publication Type :
Academic Journal
Accession number :
147319780
Full Text :
https://doi.org/10.1109/TPS.2020.2991860