Back to Search Start Over

White Spot Syndrome Virus Benefits from Endosomal Trafficking, Substantially Facilitated by a Valosin-Containing Protein, To Escape Autophagic Elimination and Propagate in the Crustacean Cherax quadricarinatus.

Authors :
Chuang Meng
Ling-Ke Liu
Dong-Li Li
Rui-Lin Gao
Wei-Wei Fan
Ke-Jian Wang
Han-Ching Wang
Hai-Peng Liu
Source :
Journal of Virology. 2020, Vol. 94 Issue 24, p1-31. 31p.
Publication Year :
2020

Abstract

As the most severely lethal viral pathogen for crustaceans in both brackish water and freshwater, white spot syndrome virus (WSSV) has a mechanism of infection that remains largely unknown, which profoundly limits the control of WSSV disease. By using a hematopoietic tissue (Hpt) stem cell culture from the red claw crayfish Cherax quadricarinatus suitable for WSSV propagation in vitro, the intracellular trafficking of live WSSV, in which the acidic-pH-dependent endosomal environment was a prerequisite for WSSV fusion, was determined for the first time via live-cell imaging. When the acidic pH within the endosome was alkalized by chemicals, the intracellular WSSV virions were detained in dysfunctional endosomes, resulting in appreciable blocking of the viral infection. Furthermore, disrupted valosincontaining protein (C. quadricarinatus VCP [CqVCP]) activity resulted in considerable aggregation of endocytic WSSV virions in the disordered endosomes, which subsequently recruited autophagosomes, likely by binding to CqGABARAP via CqVCP, to eliminate the aggregated virions within the dysfunctional endosomes. Importantly, both autophagic sorting and the degradation of intracellular WSSV virions were clearly enhanced in Hpt cells with increased autophagic activity, demonstrating that autophagy played a defensive role against WSSV infection. Intriguingly, most of the endocytic WSSV virions were directed to the endosomal delivery system facilitated by CqVCP activity so that they avoided autophagy degradation and successfully delivered the viral genome into Hpt cell nuclei, which was followed by the propagation of progeny virions. These findings will benefit anti-WSSV target design against the most severe viral disease currently affecting farmed crustaceans. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0022538X
Volume :
94
Issue :
24
Database :
Academic Search Index
Journal :
Journal of Virology
Publication Type :
Academic Journal
Accession number :
147354712
Full Text :
https://doi.org/10.1128/JVI.01570-20