Back to Search Start Over

FPGA-Based Deep Convolutional Neural Network of Process Adaptive VMD Data With Online Sequential RVFLN for Power Quality Events Recognition.

Authors :
Sahani, Mrutyunjaya
Dash, Pradipta Kishore
Source :
IEEE Transactions on Power Electronics. Apr2021, Vol. 36 Issue 4, p4006-4015. 10p.
Publication Year :
2021

Abstract

In this article, self-adaptive variational mode decomposition (SAVMD), deep convolutional neural networks (DCNN), and online-sequential random vector functional link networks (OSRVFLN) are integrated to categorize the single as well as combined power quality events (PQEs) in real time. The SAVMD method is proposed to optimize both the number of decomposition and data-fidelity factor to extract the most efficient band-limited mode (BLM) based on entropy and Kurtosis index. The most discriminative unsupervised features are extracted automatically using a DCNN from the BLM of SAVMD. The extracted distinct feature vector is fed to the proposed supervised OSRVFLN classifier to train accurately by minimizing the training cross-entropy loss with an increment in the number of hidden nodes for obtaining the maximum classification accuracy of the complex PQE patterns in noisy and noise-free environments. The automatic efficacious feature extraction, superior classification accuracy, noise immunity, and short event detection time are the major advantages of the proposed SAVMD-DCNN-OSRVFLN method. Finally, the novel methodology is implemented in a fast digital Xilinx Virtex-5 field-programmable gate array embedded processor to validate the practicability and feasibility of the proposed method in real-time. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
08858993
Volume :
36
Issue :
4
Database :
Academic Search Index
Journal :
IEEE Transactions on Power Electronics
Publication Type :
Academic Journal
Accession number :
147401381
Full Text :
https://doi.org/10.1109/TPEL.2020.3023770