Back to Search Start Over

Dynamic Knowledge Inference Based on Bayesian Network Learning.

Authors :
Wang, Deyan
AmrilJaharadak, Adam
Xiao, Ying
Source :
Mathematical Problems in Engineering. 12/7/2020, p1-9. 9p.
Publication Year :
2020

Abstract

On the basis of studying datasets of students' course scores, we constructed a Bayesian network and undertook probabilistic inference analysis. We selected six requisite courses in computer science as Bayesian network nodes. We determined the order of the nodes based on expert knowledge. Using 356 datasets, the K2 algorithm learned the Bayesian network structure. Then, we used maximum a posteriori probability estimation to learn the parameters. After constructing the Bayesian network, we used the message-passing algorithm to predict and infer the results. Finally, the results of dynamic knowledge inference were presented through a detailed inference process. In the absence of any evidence node information, the probability of passing other courses was calculated. A mathematics course (a basic professional course) was chosen as the evidence node to dynamically infer the probability of passing other courses. Over time, the probability of passing other courses greatly improved, and the inference results were consistent with the actual values and can thus be visualized and applied to an actual school management system. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1024123X
Database :
Academic Search Index
Journal :
Mathematical Problems in Engineering
Publication Type :
Academic Journal
Accession number :
147460997
Full Text :
https://doi.org/10.1155/2020/6613896