Back to Search Start Over

High throughput acoustic microfluidic mixer controls self-assembly of protein nanoparticles with tuneable sizes.

Authors :
Pourabed, Amir
Younas, Tayyaba
Liu, Chang
Shanbhag, Bhuvana K.
He, Lizhong
Alan, Tuncay
Source :
Journal of Colloid & Interface Science. Mar2021, Vol. 585, p229-236. 8p.
Publication Year :
2021

Abstract

Protein nanoparticles have attracted increased interest due to their broad applications ranging from drug delivery and vaccines to biocatalysts and biosensors. The morphology and the size of the nanoparticles play a crucial role in determining their suitability for different applications. Yet, effectively controlling the size of the nanoparticles is still a significant challenge in their manufacture. The hypothesis of this paper is that the assembly conditions and size of protein particles can be tuned via a mechanical route by simply modifying the mixing time and strength, while keeping the chemical parameters constant. We use an acoustically actuated, high throughput, ultrafast, microfluidic mixer for the assembly of protein particles with tuneable sizes. The performance of the acoustic micro-mixer is characterized via Laser Doppler Vibrometry and image processing. The assembly of protein nanoparticles is monitored by dynamic light scattering (DLS) and transmission electron microscopy (TEM). By changing actuation parameters, the turbulence and mixing in the microchannel can be precisely varied to control the initiation of protein particle assembly while the solution conditions of assembly (pH and ionic strength) are kept constant. Importantly, mixing times as low as 6 ms can be achieved for triggering protein assembly in the microfluidic channel. In comparison to the conventional batch process of assembly, the acoustic microfluidic mixer approach produces smaller particles with a more uniform size distribution, promising a new way to manufacture protein particles with controllable quality. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219797
Volume :
585
Database :
Academic Search Index
Journal :
Journal of Colloid & Interface Science
Publication Type :
Academic Journal
Accession number :
147777375
Full Text :
https://doi.org/10.1016/j.jcis.2020.11.070