Back to Search Start Over

Spaceborne Multifrequency PolInSAR-Based Inversion Modelling for Forest Height Retrieval.

Authors :
Kumar, Shashi
Govil, Himanshu
Srivastava, Prashant K.
Thakur, Praveen K.
Kushwaha, Satya P. S.
Source :
Remote Sensing. Dec2020, Vol. 12 Issue 24, p4042. 1p.
Publication Year :
2020

Abstract

Spaceborne and airborne polarimetric synthetic-aperture radar interferometry (PolInSAR) data have been extensively used for forest parameter retrieval. The PolInSAR models have proven their potential in the accurate measurement of forest vegetation height. Spaceborne monostatic multifrequency data of different SAR missions and the Global Ecosystem Dynamics Investigation (GEDI)-derived forest canopy height map were used in this study for vegetation height retrieval. This study tested the performance of PolInSAR complex coherence-based inversion models for estimating the vegetation height of the forest ranges of Doon Valley, Uttarakhand, India. The inversion-based forest height obtained from the three-stage inversion (TSI) model had higher accuracy than the coherence amplitude inversion (CAI) model-based estimates. The vegetation height values of GEDI-derived canopy height map did not show good relation with field-measured forest height values. It was found that, at several locations, GEDI-derived forest height values underestimated the vegetation height. The statistical analysis of the GEDI-derived estimates with field-measured height showed a high root mean square error (RMSE; 5.82 m) and standard error (SE; 5.33 m) with a very low coefficient of determination (R2; 0.0022). An analysis of the spaceborne-mission-based forest height values suggested that the L-band SAR has great potential in forest height retrieval. TSI-model-based forest height values showed lower p-values, which indicates the significant relation between modelled and field-measured forest height values. A comparison of the results obtained from different SAR systems is discussed, and it is observed that the L-band-based PolInSAR inversion gives the most reliable result with low RMSE (2.87 m) and relatively higher R2 (0.53) for the linear regression analysis between the modelled tree height and the field data. These results indicate that higher wavelength PolInSAR datasets are more suitable for tree canopy height estimation using the PolInSAR inversion technique. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20724292
Volume :
12
Issue :
24
Database :
Academic Search Index
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
147778933
Full Text :
https://doi.org/10.3390/rs12244042