Back to Search Start Over

Design, Fabrication, and Partial Characterization of a Solar Receiver and Air-Cooled Heat Exchanger for a Concentrated Solar Power Supercritical CO2 Testbed.

Authors :
Nobles-Lookingbill, Danielle
Sahm, Aaron
Hurt, Rick
Boehm, Robert
Source :
Journal of Solar Energy Engineering. Dec2020, Vol. 142 Issue 6, p1-9. 9p.
Publication Year :
2020

Abstract

This research details the design, fabrication, and partial testing of a concentrated solar receiver and an air-cooled heat exchanger. The solar receiver and heat exchanger have been fabricated for use in an experimental system that uses the supercritical carbon dioxide Brayton cycle. They are coupled with a Science Applications International Corporation (SAIC) solar dish 250× concentrator located on the University of Nevada, Las Vegas campus. The purpose of this solar-powered supercritical CO2 system is to function as a testbed for testing the cycle, system components, and alternate system configurations. Photographic flux mapping of the dish showed peak solar flux just above 200× and is used to appropriately size the receiver. Sun tests of the tubing, receiver, and air-cooled heat exchanger were performed achieving fluid temperatures in the range of 973 K (700 °C) using nitrogen in an open loop at low mass flowrates, and above 1173-K (900 °C) receiver wall temperatures in a no-flow case. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01996231
Volume :
142
Issue :
6
Database :
Academic Search Index
Journal :
Journal of Solar Energy Engineering
Publication Type :
Academic Journal
Accession number :
147974775
Full Text :
https://doi.org/10.1115/1.4046631