Back to Search Start Over

RNA-Seq Expression Analysis of Chronic Asthmatic Mice with Bu-Shen-Yi-Qi Formula Treatment and Prediction of Regulated Gene Targets of Anti-Airway Remodeling.

Authors :
Cui, Jie
Lv, Zexi
Teng, Fangzhou
Yi, La
Tang, Weifeng
Wang, WenQian
Tulake, Wuniqiemu
Qin, Jingjing
Zhu, Xueyi
Wei, Ying
Dong, Jingcheng
Source :
Evidence-based Complementary & Alternative Medicine (eCAM). 1/18/2021, p1-9. 9p. 2 Charts, 3 Graphs.
Publication Year :
2021

Abstract

Airway remodeling is one of the typical pathological characteristics of asthma, while the structural changes of the airways in asthma are complex, which impedes the development of novel asthma targeted therapy. Our previous study had shown that Bu-Shen-Yi-Qi formula (BSYQF) could ameliorate airway remodeling in chronic asthmatic mice by modulating airway inflammation and oxidative stress in the lung. In this study, we analysed the lung transcriptome of control mice and asthmatic mouse model with/without BSYQF treatment. Using RNA-sequencing (RNA-seq) analysis, we found that 264/1746 (15.1%) of transcripts showing abnormal expression in asthmatic mice were reverted back to completely or partially normal levels by BSYQF treatment. Additionally, based on previous results, we identified 21 differential expression genes (DEGs) with fold changes (FC) > (±) 2.0 related to inflammatory, oxidative stress, mitochondria, PI3K/AKT, and MAPK signal pathways which may play important roles in the mechanism of the anti-remodeling effect of BSYQF treatment. Through inputting 21 DEGs into the IPA database to construct a gene network, we inferred Adipoq, SPP1, and TNC which were located at critical nodes in the network may be key regulators of BSYQF's anti-remodeling effect. In addition, the quantitative real-time polymerase chain reaction (qRT-PCR) result for the selected four DEGs matched those of the RNA-seq analysis. Our results provide a preliminary clue to the molecular mechanism of the anti-remodeling effect of BSYQF in asthma. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1741427X
Database :
Academic Search Index
Journal :
Evidence-based Complementary & Alternative Medicine (eCAM)
Publication Type :
Academic Journal
Accession number :
148165131
Full Text :
https://doi.org/10.1155/2021/3524571