Back to Search Start Over

A New Small-Scale Self-Excited Wound Rotor Synchronous Motor Topology.

Authors :
Bukhari, Syed Sabir Hussain
Sirewal, Ghulam Jawad
Ayub, Muhammad
Ro, Jong-Suk
Source :
IEEE Transactions on Magnetics. Jan2021, Vol. 51 Issue 1, p1-5. 5p.
Publication Year :
2021

Abstract

In this article, a new low-cost small-scale three-phase brushless motor topology is proposed. This is a new topology for self-excitation of brushless wound rotor synchronous motor investigated initially for rated speed. For brushless excitation, the stator is designed to contain two windings, namely, three-phase armature winding and exciter winding. The rotor consists of two windings, that is, harmonic winding and field winding, and a diode rectifier. An inverter feeds the three-phase armature winding which is connected in series through an uncontrolled three-phase rectifier to a single exciter winding. When the current is supplied from the inverter, both the armature and exciter windings are energized eventually producing a flux in the air gap. Since the flux produced by the exciter winding is not synchronized with the field winding, it produces a harmonic to be intercepted by the harmonic winding on the rotor. Eventually, the voltage produced in the harmonic winding is used to feed dc current to the field winding for brushless operation. The results obtained by 2-D finite-element analysis (FEA) validate the brushless operation of the motor. The proposed motor is analyzed basically for topology verification with the FEA results. Since the topology can be verified, further effort can be put to investigate such low-cost topologies for brushless wound rotor synchronous motor. It can be an alternative to a costly permanent magnet synchronous motor for specific applications. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00189464
Volume :
51
Issue :
1
Database :
Academic Search Index
Journal :
IEEE Transactions on Magnetics
Publication Type :
Academic Journal
Accession number :
148281492
Full Text :
https://doi.org/10.1109/TMAG.2020.3009372