Back to Search Start Over

Photocatalytic Properties of Eco-Friendly ZnO Nanostructures on 3D-Printed Polylactic Acid Scaffolds.

Authors :
Sevastaki, Maria
Papadakis, Vassilis M.
Romanitan, Cosmin
Suchea, Mirela Petruta
Kenanakis, George
Source :
Nanomaterials (2079-4991). Jan2021, Vol. 11 Issue 1, p168-168. 1p.
Publication Year :
2021

Abstract

The present paper reports a novel approach for fabrication of eco-friendly ZnO nanoparticles onto three-dimensional (3D)-printed polylactic acid (PLA) scaffolds/structures. Several alcohol-based traditional Greek liquors were used to achieve the corrosion of metallic zinc collected from a typical galvanic anode to obtain photocatalytic active nanostructured ZnO, varying from water, to Greek "ouzo" and "raki", and pure ethanol, in combination with "Baker's ammonia" (ammonium bicarbonate), sold worldwide in every food store. The photocatalytic active ZnO nanostructures onto three-dimensional (3D)-printed PLA scaffolds were used to achieve the degradation of 50 ppm paracetamol in water, under UV irradiation. This study provides evidence that following the proposed low-cost, eco-friendly routes for the fabrication of large-scale photocatalysts, an almost 95% degradation of 50 ppm paracetamol in water can be achieved, making the obtained 3D ZnO/PLA structures excellent candidates for real life environmental applications. This is the first literature research report on a successful attempt of using this approach for the engineering of low-cost photocatalytic active elements for pharmaceutical contaminants in waters. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20794991
Volume :
11
Issue :
1
Database :
Academic Search Index
Journal :
Nanomaterials (2079-4991)
Publication Type :
Academic Journal
Accession number :
148317951
Full Text :
https://doi.org/10.3390/nano11010168