Back to Search Start Over

Hybrid Graphene‐Gold Nanoparticle‐Based Nucleic Acid Conjugates for Cancer‐Specific Multimodal Imaging and Combined Therapeutics.

Authors :
Yang, Letao
Kim, Tae‐Hyung
Cho, Hyeon‐Yeol
Luo, Jeffrey
Lee, Jong‐Min
Chueng, Sy‐Tsong Dean
Hou, Yannan
Yin, Perry To‐Tien
Han, Jiyou
Kim, Jong Hoon
Chung, Bong Geun
Choi, Jeong‐Woo
Lee, Ki‐Bum
Source :
Advanced Functional Materials. 1/27/2021, Vol. 31 Issue 5, p1-12. 12p.
Publication Year :
2021

Abstract

Nanoparticle‐based nucleic acid conjugates (NP‐NACs) hold great promise for theragnostic applications. However, several limitations have hindered the realization of their full potential in the clinical treatment of cancer and other diseases. In diagnoses, NP‐NACs suffer from low signal‐to‐noise ratios, while the efficiency of NP‐NACs‐mediated cancer therapies has been limited by the adaptation of alternative prosurvival pathways in cancer cells. The recent emergence of personalized and precision medicine has outlined the importance of having both accurate diagnosis and efficient therapeutics in a single platform. As such, the controlled assembly of hybrid graphene oxide/gold nanoparticle (Au@GO NP)‐based cancer‐specific NACs (Au@GO NP‐NACs) for multimodal imaging and combined therapeutics is reported. The developed Au@GO NP‐NACs show excellent surface‐enhanced Raman scattering (SERS)‐mediated live‐cell cancer detection and multimodal synergistic cancer therapy through the use of photothermal, genetic, and chemotherapeutic strategies. Synergistic and selective killing of cancer cells are then demonstrated using in vitro microfluidic models. Moreover, with the distinctive advantages of the Au@GO NP‐NACs for cancer theragnostics, precision cancer treatment through the detection of cancer cells in vivo using SERS followed by efficient ablation of tumors is shown. Therefore, the Au@GO NP‐NACs can pave a new road for advanced disease theragnostics. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1616301X
Volume :
31
Issue :
5
Database :
Academic Search Index
Journal :
Advanced Functional Materials
Publication Type :
Academic Journal
Accession number :
148338114
Full Text :
https://doi.org/10.1002/adfm.202006918