Back to Search Start Over

Bartonella type IV secretion effector BepC induces stress fiber formation through activation of GEF-H1.

Authors :
Wang, Chunyan
Zhang, Haoran
Fu, Jiaqi
Wang, Meng
Cai, Yuhao
Ding, Tianyun
Jiang, Jiezhang
Koehler, Jane E.
Liu, Xiaoyun
Yuan, Congli
Source :
PLoS Pathogens. 1/28/2021, Vol. 17 Issue 1, p1-25. 25p.
Publication Year :
2021

Abstract

Bartonella T4SS effector BepC was reported to mediate internalization of big Bartonella aggregates into host cells by modulating F-actin polymerization. After that, BepC was indicated to induce host cell fragmentation, an interesting cell phenotype that is characterized by failure of rear-end retraction during cell migration, and subsequent dragging and fragmentation of cells. Here, we found that expression of BepC resulted in significant stress fiber formation and contractile cell morphology, which depended on combination of the N-terminus FIC (filamentation induced by c-AMP) domain and C-terminus BID (Bartonellaintracellular delivery) domain of BepC. The FIC domain played a key role in BepC-induced stress fiber formation and cell fragmentation because deletion of FIC signature motif or mutation of two conserved amino acid residues abolished BepC-induced cell fragmentation. Immunoprecipitation confirmed the interaction of BepC with GEF-H1 (a microtubule-associated RhoA guanosine exchange factor), and siRNA-mediated depletion of GEF-H1 prevented BepC-induced stress fiber formation. Interaction with BepC caused the dissociation of GEF-H1 from microtubules and activation of RhoA to induce formation of stress fibers. The ROCK (Rho-associated protein kinase) inhibitor Y27632 completely blocked BepC effects on stress fiber formation and cell contractility. Moreover, stress fiber formation by BepC increased the stability of focal adhesions, which consequently impeded rear-edge detachment. Overall, our study revealed that BepC-induced stress fiber formation was achieved through the GEF-H1/RhoA/ROCK pathway. Author summary: Intracellular pathogens modulate host cell actin cytoskeleton by secreting an array of effector molecules to ensure their cell invasion and intracellular survival. The zoonotic pathogen Bartonella spp trigger massive F-actin polymerization of host cells resulting the internalization of large bacterial aggregates (called "invasome" structure), which is dependent on a functional VirB/VirD4 type IV secretion system (T4SS) and its translocated Bep effector proteins. Here, we have used cell infection and ectopic expression assay to identify that Bartonella T4SS effector BepC induces stress fiber formation in infected host cells. However, BepC also disrupts the balance of stress fiber formation and focal adhesion maturation, and eventually causes cell fragmentation. Using immunoprecipitation and RNAi approaches, we identify GEF-H1 is the host factor targeted by BepC. Interaction with BepC induces the release of GEF-H1 from microtubules to plasma membrane and subsequently activates RhoA-ROCK to induce stress fiber formation. These findings shed light on our understanding of how Bartonella invade host cell and establish infection. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15537366
Volume :
17
Issue :
1
Database :
Academic Search Index
Journal :
PLoS Pathogens
Publication Type :
Academic Journal
Accession number :
148357915
Full Text :
https://doi.org/10.1371/journal.ppat.1009065