Back to Search Start Over

Suppression of Nanog inhibited cell migration and increased the sensitivity of colorectal cancer cells to 5-fluorouracil.

Authors :
Khosravi, Neda
Shahgoli, Vahid Khaze
Amini, Mohammad
Safaei, Sahar
Mokhtarzadeh, Ahad
Mansoori, Behzad
Derakhshani, Afshin
Baghbanzadeh, Amir
Baradaran, Behzad
Source :
European Journal of Pharmacology. Mar2021, Vol. 894, pN.PAG-N.PAG. 1p.
Publication Year :
2021

Abstract

Nanog is a major transcription factor related to cellular multipotency that plays important roles in the development of tumor cells, drug resistance, migration, and stemness; indicating its great potential as a therapeutic target for various malignancies including colorectal cancer (CRC). Therefore, this study was aimed to evaluate the Nanog suppression effect using small interference RNA (siRNA) combined with 5-fluorouracil (5-FU) on CRC cells. Nanog-overexpressing SW-480 cells were transfected with Nanog si-RNA and treated with 5-FU, in combination or separately. Subsequently, it was observed that Nanog expression was significantly reduced after transfection of SW-480 cells using Nanog siRNA in mRNA and protein levels. Furthermore, Nanog knockdown significantly increased CRC cell sensitivity to 5-FU drug via modulating Bax and Bcl-2 mRNA expression. Also, Nanog knockdown and 5-FU treatment cooperatively decreased the migration and self-renewal ability of SW-480 cells by regulating the expression of relevant genes. Moreover, combination therapy led to cell cycle arrest at the sub-G1 phase in CRC cells. In conclusion, our results indicated that Nanog may play an important role in the drug sensitivity, migration, and self-renewal of CRC cells; suggesting Nanog as a promising target in combination with 5-FU for the development of new therapeutic approaches for CRC. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00142999
Volume :
894
Database :
Academic Search Index
Journal :
European Journal of Pharmacology
Publication Type :
Academic Journal
Accession number :
148366699
Full Text :
https://doi.org/10.1016/j.ejphar.2021.173871