Back to Search Start Over

Structural Reorganization of Imidazolium Ionic Liquids Induced by Pressure-Enhanced Ionic Liquid—Polyethylene Oxide Interactions.

Authors :
Wang, Teng-Hui
Hsu, Li-Wen
Chang, Hai-Chou
Source :
International Journal of Molecular Sciences. Jan2021, Vol. 22 Issue 2, p981-981. 1p.
Publication Year :
2021

Abstract

Mixtures of polyethylene oxide (PEO, M.W.~900,000) and imidazolium ionic liquids (ILs) are studied using high-pressure Fourier-transform infrared spectroscopy. At ambient pressure, the spectral features in the C–H stretching region reveal that PEO can disturb the local structures of the imidazolium rings of [BMIM]+ and [HMIM]+. The pressure-induced phase transition of pure 1-butyl-3-methylimidazolium bromide ([BMIM]Br) is observed at a pressure of 0.4 GPa. Pressure-enhanced [BMIM]Br-PEO interactions may assist PEO in dividing [BMIM]Br clusters to hinder the aggregation of [BMIM]Br under high pressures. The C–H absorptions of pure 1-hexyl-3-methylimidazolium bromide [HMIM]Br do not show band narrowing under high pressures, as observed for pure [BMIM]Br. The band narrowing of C–H peaks is observed at 1.5 GPa for the [HMIM]Br-PEO mixture containing 80 wt% of [HMIM]Br. The presence of PEO may reorganize [HMIM]Br clusters into a semi-crystalline network under high pressures. The differences in aggregation states for ambient-pressure phase and high-pressure phase may suggest the potential of [HMIM]Br-PEO (M.W.~900,000) for serving as optical or electronic switches. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16616596
Volume :
22
Issue :
2
Database :
Academic Search Index
Journal :
International Journal of Molecular Sciences
Publication Type :
Academic Journal
Accession number :
148423650
Full Text :
https://doi.org/10.3390/ijms22020981