Back to Search Start Over

Relationship of common hemodynamic and respiratory target parameters with brain tissue oxygen tension in the absence of hypoxemia or hypotension after cardiac arrest: A post-hoc analysis of an experimental study using a pig model.

Authors :
Jung, Yong Hun
Shamsiev, Kamoljon
Mamadjonov, Najmiddin
Jeung, Kyung Woon
Lee, Hyoung Youn
Lee, Byung Kook
Kang, Byung Soo
Heo, Tag
Min, Yong Il
Source :
PLoS ONE. 2/4/2021, Vol. 16 Issue 2, p1-16. 16p.
Publication Year :
2021

Abstract

Brain tissue oxygen tension (PbtO2)-guided care, a therapeutic strategy to treat or prevent cerebral hypoxia through modifying determinants of cerebral oxygen delivery, including arterial oxygen tension (PaO2), end-tidal carbon dioxide (ETCO2), and mean arterial pressure (MAP), has recently been introduced. Studies have reported that cerebral hypoxia occurs after cardiac arrest in the absence of hypoxemia or hypotension. To obtain preliminary information on the degree to which PbtO2 is responsive to changes in the common target variables for PbtO2-guided care in conditions without hypoxemia or hypotension, we investigated the relationships between the common target variables for PbtO2-guided care and PbtO2 using data from an experimental study in which the animals did not experience hypoxemia or hypotension after resuscitation. We retrospectively analyzed 170 sets of MAP, ETCO2, PaO2, PbtO2, and cerebral microcirculation parameters obtained during the 60-min post-resuscitation period in 10 pigs resuscitated from ventricular fibrillation cardiac arrest. PbtO2 and cerebral microcirculation parameters were measured on parietal cortices exposed through burr holes. Multiple linear mixed effect models were used to test the independent effects of each variable on PbtO2. Despite the absence of arterial hypoxemia or hypotension, seven (70%) animals experienced cerebral hypoxia (defined as PbtO2 <20 mmHg). Linear mixed effect models revealed that neither MAP nor ETCO2 were related to PbtO2. PaO2 had a significant linear relationship with PbtO2 after adjusting for significant covariates (P = 0.030), but it could explain only 17.5% of the total PbtO2 variance (semi-partial R2 = 0.175; 95% confidence interval, 0.086–0.282). In conclusion, MAP and ETCO2 were not significantly related to PbtO2 in animals without hypoxemia or hypotension during the early post-resuscitation period. PaO2 had a significant linear association with PbtO2, but its ability to explain PbtO2 variance was small. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19326203
Volume :
16
Issue :
2
Database :
Academic Search Index
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
148495805
Full Text :
https://doi.org/10.1371/journal.pone.0245931