Back to Search Start Over

Genetic Enhancement of Ventricular Contractility Protects against Pressure-Overload-Induced Cardiac Dysfunction

Authors :
Du, Xiao-Jun
Fang, Lin
Gao, Xiao-Ming
Kiriazis, Helen
Feng, Xinheng
Hotchkin, Elodie
Finch, Angela M.
Chaulet, Hervé
Graham, Robert M.
Source :
Journal of Molecular & Cellular Cardiology. Nov2004, Vol. 37 Issue 5, p979-987. 9p.
Publication Year :
2004

Abstract

In response to pressure-overload, cardiac function deteriorates and may even progress to fulminant heart failure and death. Here we questioned if genetic enhancement of left ventricular (LV) contractility protects against pressure-overload. Transgenic (TG) mice with cardiac-restricted overexpression (66-fold) of the α1A-adrenergic receptor (α1A-AR) and their non-TG (NTG) littermates, were subjected to transverse aorta constriction (TAC)-induced pressure-overload for 12 weeks. TAC-induced hypertrophy was similar in the NTG and TG mice but the TG mice were less likely to die of heart failure compared to the non-TG animals (P <0.05). The hypercontractile phenotype of the TG mice was maintained over the 12-week period following TAC with LV fractional shortening being significantly greater than in the NTG mice (42±2 vs 29±1%, P <0.01). In the TG animals, 11-week β-AR-blockade with atenolol neither induced hypertrophy nor suppressed the hypercontractile phenotype. The hypertrophic response to pressure-overload was not altered by cardiac α1A-AR overexpression. Moreover, the inotropic phenotype of α1A-AR overexpression was well maintained under conditions of pressure overload. Although the functional decline in contractility with pressure overload was similar in the TG and NTG animals, given that contractility was higher before TAC in the TG mice, their LV function was better preserved and heart failure deaths were fewer after induction of pressure overload. [Copyright &y& Elsevier]

Details

Language :
English
ISSN :
00222828
Volume :
37
Issue :
5
Database :
Academic Search Index
Journal :
Journal of Molecular & Cellular Cardiology
Publication Type :
Academic Journal
Accession number :
14869445
Full Text :
https://doi.org/10.1016/j.yjmcc.2004.07.010