Back to Search Start Over

TiN @ Co5.47N Composite Material Constructed by Atomic Layer Deposition as Reliable Electrocatalyst for Oxygen Evolution Reaction.

Authors :
Guo, Daying
Wan, Zhixin
Li, Yan
Xi, Bin
Wang, Chengxin
Source :
Advanced Functional Materials. 3/3/2021, Vol. 31 Issue 10, p1-9. 9p.
Publication Year :
2021

Abstract

An efficient and durable oxygen evolution reaction (OER) electrocatalyst consisting of TiN @ Co5.47N is constructed by the integration of plasma nitriding and a delicate atomic layer deposition (ALD) CoxN process. Representative results of comprehensive study are: 1) the material is electrocatalytically active in universal medium. The OER overpotentials are 398, 248, and 411 mV in acidic, basic, and neutral electrolyte, respectively, at a current density of 50 mA cm−2; 2) the material records an impressive long‐term stability of continuous catalysis for 1500 h, during which the overpotential increases by only 1.3%. The synergistically electronic interaction between TiN and ALD Co5.47N, as well as a protective yet active CoTi layered double hydroxides (CoTi LDH) layer formed simultaneously at the interface/surface of TiN @ Co5.47N during the electrocatalytic process, is speculated to be responsible for the superior OER performance; 3) the surface Co atoms other than Ti of CoTi LDH, exhibit electrocatalytic activity with dramatically low overpotential based on density functional theory calculations. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1616301X
Volume :
31
Issue :
10
Database :
Academic Search Index
Journal :
Advanced Functional Materials
Publication Type :
Academic Journal
Accession number :
149048636
Full Text :
https://doi.org/10.1002/adfm.202008511