Back to Search Start Over

Sedimentary evolution and controlling factors of Early-Mid Miocene Deltaic systems in the Northern Pearl River Mouth Basin, South China Sea.

Authors :
Wang, Yanru
Lin, Changsong
Zhang, Zhongtao
Zhang, Bo
Liu, Hanyao
Source :
Scientific Reports. 3/17/2021, Vol. 11 Issue 1, p1-16. 16p.
Publication Year :
2021

Abstract

The Pearl River Mouth Basin is located at the northern continental shelf of the South China Sea. Since the early Miocene, the Paleo-pearl river transported a large amount of sediments to the northwest of the basin and resulted in the formation of a large-scale river-delta depositional system, which has become an important oil and gas reservoir in the study area. In the current paper, we investigate the characteristics and evolution of fluvial-deltaic depositional systems and their controlling factors, including sea level change, tectonic subsidence and sediment supply on the basis of 3D seismic, well logging and core data. Early-Mid Miocene succession can be divided into two second-order sequences (CS1–CS2) and eight third-order sequences (S1–S8). Deltaic systems developed in S1–S2 are relatively coarse in grain size, and the delta plain deposits are dominated by thickly stacked (100–180 m) distributary channel sand bodies and interpreted as braided delta depositional system. In the early stage (S1–S2), the braided delta systems mainly distributed in the west of the Baiyun Sag, which were proceeded by a retreat to the south of the Enping Sag along with sharply rising sea level. Following the transgression of S2, the provenance of the Paleo-Pearl River extended to the coastal region of South China, and the papleoclimate changed from warm and humid to dry and cold in the early Miocene, leading to the development of transition of braided river delta to meandering river delta, which was characterized by relatively fine grain deposits. During the deposition of S3–S6, well sorted and rounded fine sandstones of deltaic front deposits accumulated in the study area. The retrogradation to accretion and subsequent progradation of these meander delta systems are attributed to the sea level change in the study area. During the deposition of S7–S8, the delta front retreated to the south of the Enping depression as a result of minor sea level rise, reduction in sediment input, and subsidence rate. This resulted in the development of a wave-controlled deltaic depositional system. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20452322
Volume :
11
Issue :
1
Database :
Academic Search Index
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
149336311
Full Text :
https://doi.org/10.1038/s41598-021-85369-1