Back to Search Start Over

Assessing the co-variability of DNA methylation across peripheral cells and tissues: Implications for the interpretation of findings in epigenetic epidemiology.

Authors :
Hannon, Eilis
Mansell, Georgina
Walker, Emma
Nabais, Marta F.
Burrage, Joe
Kepa, Agnieszka
Best-Lane, Janis
Rose, Anna
Heck, Suzanne
Moffitt, Terrie E.
Caspi, Avshalom
Arseneault, Louise
Mill, Jonathan
Source :
PLoS Genetics. 3/19/2021, Vol. 17 Issue 3, p1-25. 25p.
Publication Year :
2021

Abstract

Most epigenome-wide association studies (EWAS) quantify DNA methylation (DNAm) in peripheral tissues such as whole blood to identify positions in the genome where variation is statistically associated with a trait or exposure. As whole blood comprises a mix of cell types, it is unclear whether trait-associated DNAm variation is specific to an individual cellular population. We collected three peripheral tissues (whole blood, buccal epithelial and nasal epithelial cells) from thirty individuals. Whole blood samples were subsequently processed using fluorescence-activated cell sorting (FACS) to purify five constituent cell-types (monocytes, granulocytes, CD4+ T cells, CD8+ T cells, and B cells). DNAm was profiled in all eight sample-types from each individual using the Illumina EPIC array. We identified significant differences in both the level and variability of DNAm between different sample types, and DNAm data-derived estimates of age and smoking were found to differ dramatically across sample types from the same individual. We found that for the majority of loci variation in DNAm in individual blood cell types was only weakly predictive of variance in DNAm measured in whole blood, although the proportion of variance explained was greater than that explained by either buccal or nasal epithelial samples. Covariation across sample types was much higher for DNAm sites influenced by genetic factors. Overall, we observe that DNAm variation in whole blood is additively influenced by a combination of the major blood cell types. For a subset of sites, however, variable DNAm detected in whole blood can be attributed to variation in a single blood cell type providing potential mechanistic insight about EWAS findings. Our results suggest that associations between whole blood DNAm and traits or exposures reflect differences in multiple cell types and our data will facilitate the interpretation of findings in epigenetic epidemiology. Author summary: As epigenetic variation is cell-type specific, an ongoing challenge in epigenetic epidemiology is how to interpret studies performed using bulk tissue (for example, whole blood) which comprises a mix of different cell types. In this study, we identified major differences in DNA methylation (DNAm) across multiple peripheral tissues and different blood cell types, with each sample type being characterized by a unique signature across multiple genomic loci. We demonstrate how these differences influence commonly used prediction scores derived from DNAm data for age and tobacco smoking, with estimates for the same individual being highly variable across tissues and cell types. Our results enabled us to assess the extent to which variable DNAm in each individual blood cell type relates to variation measured in whole blood. We found that although individual blood cell types predict more of the variation in DNAm in whole blood compared to buccal and nasal epithelial cells, the actual proportion of variance explained is relatively small, except for at sites where DNAm is under genetic control. Our data indicate that for most sites variation in multiple blood cell types additively combines to drive variation in DNAm measured in whole blood. Of note, for a subset of sites, variation in DNAm detected in whole blood can be attributed to a specific blood cell type, potentially facilitating the interpretation of EWAS findings. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15537390
Volume :
17
Issue :
3
Database :
Academic Search Index
Journal :
PLoS Genetics
Publication Type :
Academic Journal
Accession number :
149380170
Full Text :
https://doi.org/10.1371/journal.pgen.1009443