Back to Search Start Over

Fibonacci-run graphs I: Basic properties.

Authors :
Eğecioğlu, Ömer
Iršič, Vesna
Source :
Discrete Applied Mathematics. May2021, Vol. 295, p70-84. 15p.
Publication Year :
2021

Abstract

Among the classical models for interconnection networks are hypercubes and Fibonacci cubes. Fibonacci cubes are induced subgraphs of hypercubes obtained by restricting the vertex set to those binary strings which do not contain consecutive 1s, counted by Fibonacci numbers. Another set of binary strings which are counted by Fibonacci numbers are those with a restriction on the runlengths. Induced subgraphs of the hypercube on the latter strings as vertices define Fibonacci-run graphs. They have the same number of vertices as Fibonacci cubes, but fewer edges and different graph theoretical properties. We obtain properties of Fibonacci-run graphs including the number of edges, the analogue of the fundamental recursion, the average degree of a vertex, Hamiltonicity, special degree sequences, and the number of hypercubes they contain. A detailed study of the degree sequences of Fibonacci-run graphs is interesting in its own right and is reported in a companion paper. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0166218X
Volume :
295
Database :
Academic Search Index
Journal :
Discrete Applied Mathematics
Publication Type :
Academic Journal
Accession number :
149435876
Full Text :
https://doi.org/10.1016/j.dam.2021.02.025