Back to Search Start Over

Human milk extracellular vesicles target nodes in interconnected signalling pathways that enhance oral epithelial barrier function and dampen immune responses.

Authors :
Zonneveld, Marijke I.
Herwijnen, Martijn J.C.
Fernandez‐Gutierrez, Marcela M.
Giovanazzi, Alberta
Groot, Anne Marit
Kleinjan, Marije
Capel, Toni M.M.
Sijts, Alice J.A.M.
Taams, Leonie S.
Garssen, Johan
Jong, Esther C.
Kleerebezem, Michiel
Nolte‐'t Hoen, Esther N.M.
Redegeld, Frank A.
Wauben, Marca H.M.
Source :
Journal of Extracellular Vesicles. Mar2021, Vol. 10 Issue 5, p1-17. 17p.
Publication Year :
2021

Abstract

Maternal milk is nature's first functional food. It plays a crucial role in the development of the infant's gastrointestinal (GI) tract and the immune system. Extracellular vesicles (EVs) are a heterogeneous population of lipid bilayer enclosed vesicles released by cells for intercellular communication and are a component of milk. Recently, we discovered that human milk EVs contain a unique proteome compared to other milk components. Here, we show that physiological concentrations of milk EVs support epithelial barrier function by increasing cell migration via the p38 MAPK pathway. Additionally, milk EVs inhibit agonist‐induced activation of endosomal Toll like receptors TLR3 and TLR9. Furthermore, milk EVs directly inhibit activation of CD4+ T cells by temporarily suppressing T cell activation without inducing tolerance. We show that milk EV proteins target key hotspots of signalling networks that can modulate cellular processes in various cell types of the GI tract. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20013078
Volume :
10
Issue :
5
Database :
Academic Search Index
Journal :
Journal of Extracellular Vesicles
Publication Type :
Academic Journal
Accession number :
149452861
Full Text :
https://doi.org/10.1002/jev2.12071