Back to Search Start Over

Structure of the p53/RNA polymerase II assembly.

Authors :
Liou, Shu-Hao
Singh, Sameer K.
Singer, Robert H.
Coleman, Robert A.
Liu, Wei-Li
Source :
Communications Biology. 3/25/2021, Vol. 4 Issue 1, p1-12. 12p.
Publication Year :
2021

Abstract

The tumor suppressor p53 protein activates expression of a vast gene network in response to stress stimuli for cellular integrity. The molecular mechanism underlying how p53 targets RNA polymerase II (Pol II) to regulate transcription remains unclear. To elucidate the p53/Pol II interaction, we have determined a 4.6 Å resolution structure of the human p53/Pol II assembly via single particle cryo-electron microscopy. Our structure reveals that p53's DNA binding domain targets the upstream DNA binding site within Pol II. This association introduces conformational changes of the Pol II clamp into a further-closed state. A cavity was identified between p53 and Pol II that could possibly host DNA. The transactivation domain of p53 binds the surface of Pol II's jaw that contacts downstream DNA. These findings suggest that p53's functional domains directly regulate DNA binding activity of Pol II to mediate transcription, thereby providing insights into p53-regulated gene expression. Liou et al. report a 4.6 Å resolution structure of the human p53/ RNA polymerase II assembly, using single particle cryoelectron microscopy. This study suggests that p53's functional domains regulate the DNA binding activity of RNA polymerase II, providing insights into p53-regulated gene expression. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
23993642
Volume :
4
Issue :
1
Database :
Academic Search Index
Journal :
Communications Biology
Publication Type :
Academic Journal
Accession number :
149471827
Full Text :
https://doi.org/10.1038/s42003-021-01934-4