Back to Search Start Over

An Electromagnetic Model for the Calculation of Tower Surge Impedance Based on Thin Wire Approximation.

Authors :
Salarieh, Bamdad
De Silva, H. M. Jeewantha
Gole, Aniruddha M.
Ametani, Akihiro
Kordi, Behzad
Source :
IEEE Transactions on Power Delivery. Apr2021, Vol. 36 Issue 2, p1173-1182. 10p.
Publication Year :
2021

Abstract

When lightning strikes a transmission line tower or shield wires, electromagnetic waves propagate through the tower back and forth, increasing the voltage across insulator strings. This can eventually lead to a back-flashover (BF), which may cause damage to equipment or costly power outages. To calculate the over-voltages and predict the probability of a BF, an accurate model of the tower and its grounding system is needed in electromagnetic transient (EMT) type simulators. There are a number of theoretical models for the equivalent circuit of a transmission tower. However, they either are not accurate enough or they are derived for a certain type of transmission tower, which limits their applicability. Numerical electromagnetic analyses have less simplifications compared to the theoretical solutions and are by far less expensive than field measurements. They also have the flexibility to analyse any type of tower. In this paper, the direct method for the measurement of tower impedance is implemented by NEC4 and applied to a 400-kV double circuit tower with all its details. The process of obtaining the wire network of the tower used in this paper is completely automated and it can be applied to any other type of transmission tower. The results of the numerical simulations are compared to those obtained with existing tower models. The developed model in this paper is capable of considering all the details of the tower and including the finite resistance of the ground and grounding electrodes. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
08858977
Volume :
36
Issue :
2
Database :
Academic Search Index
Journal :
IEEE Transactions on Power Delivery
Publication Type :
Academic Journal
Accession number :
149510320
Full Text :
https://doi.org/10.1109/TPWRD.2020.3003250