Back to Search Start Over

Experimental Study on the Performance of a Novel Compact Electrostatic Coalescer with Helical Electrodes.

Authors :
Shi, Yi
Chen, Jiaqing
Pan, Zehao
Azaiez, Jalel
Boek, Edo
Source :
Energies (19961073). 3/15/2021, Vol. 14 Issue 6, p1733-1733. 1p.
Publication Year :
2021

Abstract

As most of the light and easy oil fields have been produced or are nearing their end-life, the emulsion stability is enhanced and water cut is increasing in produced fluid which have brought challenges to oil–water separation in onshore and offshore production trains. The conventional solution to these challenges includes a combination of higher chemical dosages, larger vessels and more separation stages, which often demands increased energy consumption, higher operating costs and larger space for the production facility. It is not always feasible to address the issues by conventional means, especially for the separation process on offshore platforms. Electrostatic coalescence is an effective method to achieve demulsification and accelerate the oil–water separation process. In this paper, a novel compact electrostatic coalescer with helical electrodes was developed and its performance on treatment of water-in-oil emulsions was investigated by experiments. Focused beam reflectance measurement (FBRM) was used to make real-time online measurements of water droplet sizes in the emulsion. The average water droplet diameters and number of droplets within a certain size range are set as indicators for evaluating the effect of coalescence. We investigated the effect of electric field strength, frequency, water content and fluid velocity on the performance of coalescence. The experimental results showed that increasing the electric field strength could obviously contribute to the growth of small water droplets and coalescence. The extreme value of electric field strength achieved in the high-frequency electric field was much higher than that in the power-frequency (50 Hz) electric field, which can better promote the growth of water droplets. The initial average diameters of water droplets increase with higher water content. The rate of increment in the electric field was also increased. Its performance was compared with that of the plate electrodes to further verify the advantages of enhancing electrostatic coalescence and demulsification with helical electrodes. The research results can provide guidance for the optimization and performance improvement of a compact electrocoalescer. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19961073
Volume :
14
Issue :
6
Database :
Academic Search Index
Journal :
Energies (19961073)
Publication Type :
Academic Journal
Accession number :
149611067
Full Text :
https://doi.org/10.3390/en14061733