Back to Search Start Over

Impacts of vegetative and reproductive plasticity associated with tillering in maize crops in low-yielding environments: A physiological framework.

Authors :
Rotili, Diego Hernán
Sadras, Victor O.
Abeledo, L. Gabriela
Ferreyra, Juan Matías
Micheloud, José Roberto
Duarte, Gustavo
Girón, Paula
Ermácora, Matías
Maddonni, Gustavo Ángel
Source :
Field Crops Research. May2021, Vol. 265, pN.PAG-N.PAG. 1p.
Publication Year :
2021

Abstract

• Modern maize hybrids sown at low densities tiller in non-restrictive environments. • Light quality and plant growth rate at early stages govern tiller emission. • Tiller fertility would be determined by shoot growth rate around flowering. • Reproductive plasticity is needed to stabilize yields in ultra-low density settings. • The impact of tillering on crop water and nitrogen economies is hypothesized. Selection for maize (Zea mays L.) grain yield in high-yielding environments at high population densities has favored a compact phenotype tolerant to crowding stress, bearing a single, well-grained ear. However, by contributing to vegetative and reproductive plasticity (i.e., multiple shoots and ears per plant, respectively), tillering may be adaptive in environments with low and variable availability of resources, chiefly water and nutrients, where crops are sown at low plant population density. In this work we present a robust, new conceptual framework for vegetative and reproductive plasticity in maize with direct agronomic applications, combining original data from new experiments and data reviewed from the literature. First, we describe production systems where tillering in maize would be relevant in terms of grain yield. Next, we discuss possible masked effects of genetic selection at high plant densities on tillering and present novel experimental results showing genotypic variation of tillering in modern maize hybrids and genotype x environment x management effects (plant density x location x sowing date) on tillering expression. We follow with a two-part framework to analyze tillering and prolificacy. In the first part (from axillary buds to tillers), we integrate the early effects of the light environment (through photomorphogenesis) and carbon balance on tillering emission, and discuss the environmental factors (temperature, photoperiod, radiation, water, nitrogen) that modulate tiller emission and tiller growth. In the second part (from tillers to kernels), we summarize the functional relationships governing kernel set on the ears of main shoot (apical and sub-apical ears) and tillers, focusing on the growth rate of shoot cohorts, rather than the whole plant. We then provide examples of the diverse patterns of contribution of multiple shoots to crop grain yield for maize husbandry in low-yielding environments. Finally, we address the effect of tillering on resource capture and use efficiency of maize crops by discussing its relationship with biomass and grain yield and provide supportive experimental data. We conclude with identification of knowledge gaps leading to testable hypotheses. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
03784290
Volume :
265
Database :
Academic Search Index
Journal :
Field Crops Research
Publication Type :
Academic Journal
Accession number :
149633126
Full Text :
https://doi.org/10.1016/j.fcr.2021.108107