Back to Search
Start Over
Reduction of cardiac dose using respiratory-gated MR-linac plans for gastro-esophageal junction cancer.
- Source :
-
Medical Dosimetry . Fall22021, Vol. 46 Issue 2, p152-156. 5p. - Publication Year :
- 2021
-
Abstract
- Treatment of locally advanced adenocarcinoma of the gastroesophageal junction (GEJ) with chemoradiation may be associated with high rates of symptomatic cardiac toxicity. Large margins are typically required to ensure coverage of GEJ tumors with free-breathing volumetric modulated arc therapy (VMAT) radiotherapy. The purpose of this study is to determine whether treatment with tighter margins enabled by maximum-inhalation breath hold (MIBH)-gated intensity modulated radiation therapy (IMRT) on an integrated MRI-linear accelerator system (MR-linac) can decrease radiation doses to the heart and cardiac substructures. Ten patients with locally advanced GEJ adenocarcinoma underwent both free breathing 4-dimensional computed tomography (4DCT) and MIBH MRI simulation scans. MR-linac IMRT plans were created with a 3 mm clinical target volume (CTV) to planning target volume (PTV) isotropic margin and 4DCT VMAT plans were created with a 11, 13, and 9 mm CTV to PTV anisotropic margins in the left-right, cranial-caudal, and anterior-posterior directions according to GEJ-specific PTV expansion recommendations by Voncken et al. Prescription dose to PTV was 50.4 Gy in 28 fractions. Dosimetry to the heart and cardiac substructures was compared with paired t test; p < 0.05 was considered significant. Mean PTV on the MR-linac IMRT plans was significantly smaller compared to the 4DCT VMAT plans (689 cm3 vs 1275 cm3, p < 0.01). Mean dose to the heart and all cardiac substructures was significantly lower in the MR-linac IMRT plans compared to the 4DCT VMAT plans: heart 20.9 Gy vs 27.8 Gy, left atrium 29.6 Gy vs 39.4 Gy, right atrium 20.5 Gy vs 25.6 Gy, left ventricle 21.6 Gy vs 29.6 Gy, and right ventricle 18.7 Gy vs 25.2 Gy (all p values <0.05). MIBH-gated MR-linac IMRT treatment of locally advanced GEJ adenocarcinoma can significantly decrease doses to the heart and cardiac substructures and this may translate to reduced rates of cardiac toxicity. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 09583947
- Volume :
- 46
- Issue :
- 2
- Database :
- Academic Search Index
- Journal :
- Medical Dosimetry
- Publication Type :
- Academic Journal
- Accession number :
- 149760836
- Full Text :
- https://doi.org/10.1016/j.meddos.2020.10.002