Back to Search Start Over

The purine nucleoside phosphorylase pnp-1 regulates epithelial cell resistance to infection in C. elegans.

Authors :
Tecle, Eillen
Chhan, Crystal B.
Franklin, Latisha
Underwood, Ryan S.
Hanna-Rose, Wendy
Troemel, Emily R.
Source :
PLoS Pathogens. 4/20/2021, Vol. 17 Issue 4, p1-25. 25p.
Publication Year :
2021

Abstract

Intestinal epithelial cells are subject to attack by a diverse array of microbes, including intracellular as well as extracellular pathogens. While defense in epithelial cells can be triggered by pattern recognition receptor-mediated detection of microbe-associated molecular patterns, there is much to be learned about how they sense infection via perturbations of host physiology, which often occur during infection. A recently described host defense response in the nematode C. elegans called the Intracellular Pathogen Response (IPR) can be triggered by infection with diverse natural intracellular pathogens, as well as by perturbations to protein homeostasis. From a forward genetic screen, we identified the C. elegans ortholog of purine nucleoside phosphorylase pnp-1 as a negative regulator of IPR gene expression, as well as a negative regulator of genes induced by extracellular pathogens. Accordingly, pnp-1 mutants have resistance to both intracellular and extracellular pathogens. Metabolomics analysis indicates that C. elegans pnp-1 likely has enzymatic activity similar to its human ortholog, serving to convert purine nucleosides into free bases. Classic genetic studies have shown how mutations in human purine nucleoside phosphorylase cause immunodeficiency due to T-cell dysfunction. Here we show that C. elegans pnp-1 acts in intestinal epithelial cells to regulate defense. Altogether, these results indicate that perturbations in purine metabolism are likely monitored as a cue to promote defense against epithelial infection in the nematode C. elegans. Author summary: All life requires purine nucleotides. However, obligate intracellular pathogens are incapable of generating their own purine nucleotides and thus have evolved strategies to steal these nucleotides from host cells in order to support their growth and replication. Using the small roundworm C. elegans, we show that infection with natural obligate intracellular pathogens is impaired by loss of pnp-1, the C. elegans ortholog of the vertebrate purine nucleoside phosphorylase (PNP), which is an enzyme involved in salvaging purines. Loss of pnp-1 leads to altered levels of purine nucleotide precursors and increased expression of Intracellular Pathogen Response genes, which are induced by viral and fungal intracellular pathogens of C. elegans. In addition, we find that loss of pnp-1 increases resistance to extracellular pathogen infection and increases expression of genes involved in extracellular pathogen defense. Interestingly, studies from 1975 found that mutations in human PNP impair T-cell immunity, whereas our findings here indicate C. elegans pnp-1 regulates intestinal epithelial immunity. Overall, our work indicates that host purine homeostasis regulates resistance to both intracellular and extracellular pathogen infection. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15537366
Volume :
17
Issue :
4
Database :
Academic Search Index
Journal :
PLoS Pathogens
Publication Type :
Academic Journal
Accession number :
149902699
Full Text :
https://doi.org/10.1371/journal.ppat.1009350