Back to Search Start Over

Prediction of Blasting Vibration Velocity of Layered Rock Mass under Multihole Cut Blasting.

Authors :
Zhu, Jie
Wei, Haixia
Yang, Xiaolin
Chu, Huaibao
Source :
Shock & Vibration. 4/23/2021, p1-10. 10p.
Publication Year :
2021

Abstract

In the blasting construction of underground engineering in layered rock mass, the mechanism of cut blasting and the propagation law of blasting vibration waves are very complex. In this paper, a new method for predicting the blasting vibration velocity of layered rock mass under multihole cut blasting is proposed. The key steps include determining the equivalent elastic boundary and load, establishing the multidegree freedom model of blasting vibration and its motion differential equation, and solving the motion differential equation by time-history analysis method. Two multihole cut blasting tests of different schemes were carried out in the construction site of layered rock mass, and the measured results of blasting vibration waves were obtained. By comparing the time-history curves of the predicted and measured blasting vibration velocity, it can be seen that the time-history curves predicted by the proposed method can reflect the characteristics and attenuation law of blasting vibration waves, and the predicted waveforms are similar to the measured waveforms. By using the proposed method, the prediction accuracy for the peak velocity of blasting vibration in the two tests is 93% and 94%, respectively, and the prediction accuracy for the dominant frequency of blasting vibration in the two tests is 86% and 94%, respectively. The prediction accuracy of the main characteristic parameters of blasting vibration waves is high. So it can be proved that the prediction method proposed in this paper is feasible in effectiveness and accuracy, which can provide important theoretical guidance for the optimization of blasting design and the control of blasting vibration in underground engineering in layered rock mass. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10709622
Database :
Academic Search Index
Journal :
Shock & Vibration
Publication Type :
Academic Journal
Accession number :
149971249
Full Text :
https://doi.org/10.1155/2021/5511190