Back to Search Start Over

Prophages integrating into prophages: A mechanism to accumulate type III secretion effector genes and duplicate Shiga toxin-encoding prophages in Escherichia coli.

Authors :
Nakamura, Keiji
Ogura, Yoshitoshi
Gotoh, Yasuhiro
Tetsuya, Hayashi
Source :
PLoS Pathogens. 4/29/2021, Vol. 17 Issue 4, p1-21. 21p.
Publication Year :
2021

Abstract

Bacteriophages (or phages) play major roles in the evolution of bacterial pathogens via horizontal gene transfer. Multiple phages are often integrated in a host chromosome as prophages, not only carrying various novel virulence-related genetic determinants into host bacteria but also providing various possibilities for prophage-prophage interactions in bacterial cells. In particular, Escherichia coli strains such as Shiga toxin (Stx)-producing E. coli (STEC) and enteropathogenic E. coli (EPEC) strains have acquired more than 10 prophages (up to 21 prophages), many of which encode type III secretion system (T3SS) effector gene clusters. In these strains, some prophages are present at a single locus in tandem, which is usually interpreted as the integration of phages that use the same attachment (att) sequence. Here, we present phages integrating into T3SS effector gene cluster-associated loci in prophages, which are widely distributed in STEC and EPEC. Some of the phages integrated into prophages are Stx-encoding phages (Stx phages) and have induced the duplication of Stx phages in a single cell. The identified attB sequences in prophage genomes are apparently derived from host chromosomes. In addition, two or three different attB sequences are present in some prophages, which results in the generation of prophage clusters in various complex configurations. These phages integrating into prophages represent a medically and biologically important type of inter-phage interaction that promotes the accumulation of T3SS effector genes in STEC and EPEC, the duplication of Stx phages in STEC, and the conversion of EPEC to STEC and that may be distributed in other types of E. coli strains as well as other prophage-rich bacterial species. Author summary: Multiple prophages are often integrated in a bacterial host chromosome and some are present at a single locus in tandem. The most striking examples are Shiga toxin (Stx)-producing and enteropathogenic Escherichia coli (STEC and EPEC) strains, which usually contain more than 10 prophages (up to 21). Many of them encode a cluster of type III secretion system (T3SS) effector genes, contributing the acquisition of a large number of effectors (>30) by STEC and EPEC. Here, we describe prophages integrating into T3SS effector gene cluster-associated loci in prophages, which are widely distributed in STEC and EPEC. Two or three different attachment sequences derived from host chromosomes are present in some prophages, generating prophage clusters in various complex configurations. Of note, some of such phages integrating into prophages are Stx-encoding phages (Stx phages) and have induced the duplication of Stx phages. Thus, "prophage-in-prophage" represents an important inter-phage interaction as they can promote not only the accumulation of T3SS effectors in STEC and EPEC but also the duplication of Stx phages and the conversion of EPEC to STEC. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15537366
Volume :
17
Issue :
4
Database :
Academic Search Index
Journal :
PLoS Pathogens
Publication Type :
Academic Journal
Accession number :
150069462
Full Text :
https://doi.org/10.1371/journal.ppat.1009073