Back to Search Start Over

miR-942-5p Inhibits Proliferation, Metastasis, and Epithelial-Mesenchymal Transition in Colorectal Cancer by Targeting CCBE1.

Authors :
Zhou, Lin
Chen, Qing
Wu, Jie
Yang, Jian
Yin, Huancai
Tian, Jingjing
Gong, Lian
Kong, DanDan
Tao, Min
Source :
BioMed Research International. 4/29/2021, p1-13. 13p.
Publication Year :
2021

Abstract

Although colorectal cancer (CRC) is common, there is a paucity of information regarding its molecular pathogenesis. Studies have shown that miRNAs play pivotal roles in the development and progression of CRC. There is a need to further investigate the biological functions of miRNAs in CRC. In particular, it has been reported that miR-942-5p exhibits tumor-suppressive properties. Thus, we analyzed the functional significance of miR-942-5p in CRC and the underlying molecular mechanisms. We found that miR-942-5p was downregulated in CRC tissues and cells. Cell Counting Kit-8, EdU, and colony formation assays revealed that the overexpression of miR-942-5p by mimics inhibited the proliferation of CRC cells. Use of the miR-942-5p inhibitor effectively enhanced the proliferative potential of CRC cells. Further, in vivo xenograft experiments confirmed these results. Increased expression of miR-942-5p suppressed the invasion, migration, and epithelial-mesenchymal transition of CRC cell lines, while decreased miR-942-5p expression had the opposite effect. CCBE1, a secretory molecule for lymphangiogenesis, was established as a downstream target of miR-942-5p, and its expression was inversely correlated with the expression of miR-942-5p in CRC cells. Additionally, cotransfection of the miR-942-5p inhibitor with si-CCBE1 into CRC cells reversed the effects induced by miR-942-5p overexpression. In conclusion, we confirmed that miR-942-5p exerts oncogenic actions in CRC by targeting CCBE1 and identified miR-942-5p as a potential clinical biomarker for CRC diagnosis and therapy. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
23146133
Database :
Academic Search Index
Journal :
BioMed Research International
Publication Type :
Academic Journal
Accession number :
150071084
Full Text :
https://doi.org/10.1155/2021/9951405