Back to Search Start Over

4-Acetylantrocamol LT3 Inhibits Glioblastoma Cell Growth and Downregulates DNA Repair Enzyme O6-Methylguanine-DNA Methyltransferase.

Authors :
Lee, Shih-Yu
Yen, I-Chuan
Lin, Jang-Chun
Chung, Min-Chieh
Liu, Wei-Hsiu
Source :
American Journal of Chinese Medicine. 2021, Vol. 49 Issue 4, p983-999. 17p.
Publication Year :
2021

Abstract

Glioblastoma multiforme (GBM) is a deadly malignant brain tumor that is resistant to most clinical treatments. Novel therapeutic agents that are effective against GBM are required. Antrodia cinnamomea has shown antiproliferative effects in GBM cells. However, the exact mechanisms and bioactive components remain unclear. Thus, the present study aimed to investigate the effect and mechanism of 4-acetylantrocamol LT3 (4AALT3), a new ubiquinone from Antrodia cinnamomeamycelium, in vitro. U87 and U251 cell lines were treated with the indicated concentration of 4AALT3. Cell viability, cell colony-forming ability, migration, and the expression of proteins in well-known signaling pathways involved in the malignant properties of glioblastoma were then analyzed by CCK-8, colony formation, wound healing, and western blotting assays, respectively. We found that 4AALT3 significantly decreased cell viability, colony formation, and cell migration in both in vitro models. The epidermal growth factor receptor (EGFR), phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR), Hippo/yes-associated protein (YAP), and cAMP-response element binding protein (CREB) pathways were suppressed by 4AALT3. Moreover, 4AALT3 decreased the level of DNA repair enzyme O6-methylguanine-DNA methyltransferase and showed a synergistic effect with temozolomide. Our findings provide the basis for exploring the beneficial effect of 4AALT3 on GBM in vivo. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0192415X
Volume :
49
Issue :
4
Database :
Academic Search Index
Journal :
American Journal of Chinese Medicine
Publication Type :
Academic Journal
Accession number :
150143953
Full Text :
https://doi.org/10.1142/S0192415X21500476