Back to Search Start Over

A Comprehensive Assessment of All-Oleate Polysorbate 80: Free Fatty Acid Particle Formation, Interfacial Protection and Oxidative Degradation.

Authors :
Doshi, Nidhi
Giddings, Jamie
Luis, Lin
Wu, Arthur
Ritchie, Kyle
Liu, Wenqiang
Chan, Wayman
Taing, Rosalynn
Chu, Jeff
Sreedhara, Alavattam
Kannan, Aadithya
Kei, Pervina
Shieh, Ian
Graf, Tobias
Hu, Mark
Source :
Pharmaceutical Research. Mar2021, Vol. 38 Issue 3, p531-548. 18p.
Publication Year :
2021

Abstract

Purpose: Enzymatic polysorbate (PS) degradation and resulting free fatty acid (FFA) particles are detrimental to biopharmaceutical drug product (DP) stability. Different types and grades of polysorbate have varying propensity to form FFA particles. This work evaluates the homogenous all-oleate (AO) PS80 alongside heterogeneous PS20 and PS80 grades in terms its propensity to form FFA particles and other important attributes like interfacial protection and oxidation susceptibility. Methods: FFA particle formation rates were compared by degrading PS using non-immobilized hydrolases and fast degrading DP formulations. Interfacial protection of monoclonal antibodies (mAbs) was assessed by agitation studies in saline using non-degraded and degraded PS. Several antioxidants were assessed for their ability to mitigate AO PS80 oxidation and subsequent mAb oxidation by a 40°C placebo stability study and a 2, 2′-Azobis (2-amidinopropane) dihydrochloride stress model, respectively. Results: Visible and subvisible particles were significantly delayed in AO PS80 formulations compared with heterogeneous PS20 and PS80 formulations. Non-degraded AO PS80 was less protective of mAbs against the air-water interface compared with heterogeneous PS20. Interfacial protection by AO PS80 improved upon degradation owing to high surface activity of FFAs. Diethylenetriaminepentaacetic acid (DTPA) completely mitigated AO PS80 oxidation unlike L-methionine and N-Acetyl-DL-Tryptophan. However, DTPA did not mitigate radical mediated mAb oxidation. Conclusion: AO PS80 is a promising alternative to reduce FFA particle formation compared with other PS types and grades. However, limitations observed here---such as lower protection against interfacial stresses and higher propensity for oxidation---need to be considered in assessing the risk/benefit ratio in using AO PS80. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
07248741
Volume :
38
Issue :
3
Database :
Academic Search Index
Journal :
Pharmaceutical Research
Publication Type :
Academic Journal
Accession number :
150234051
Full Text :
https://doi.org/10.1007/s11095-021-03021-z