Back to Search Start Over

Computational Fluid Dynamics Analysis of Flow Patterns, Pressure Drop, and Heat Transfer Coefficient in Staggered and Inline Shell-Tube Heat Exchangers.

Authors :
Sharma, Shubham
Sharma, Shalab
Singh, Mandeep
Singh, Parampreet
Singh, Rasmeet
Maharana, Sthitapragyan
Khalilpoor, Nima
Issakhov, Alibek
Source :
Mathematical Problems in Engineering. 6/1/2021, p1-10. 10p.
Publication Year :
2021

Abstract

In this numerical study, the heat transfer performance of shell-and-tube heat exchangers (STHXs) has been compared for two different tube arrangements. STHX having 21 and 24 tubes arranged in the inline and staggered grid has been considered for heat transfer analysis. Shell-and-tube heat exchanger with staggered grid arrangement has been observed to provide lesser thermal stratification as compared to the inline arrangement. Further, the study of variation in the mass flow rate of shell-side fluid having constant tube-side flow rate has been conducted for staggered grid structure STHX. The mass flow rate for the shell side has been varied from 0.1 kg/s to 0.5 kg/s, respectively, keeping the tube-side mass flow rate as constant at 0.25 kg/s. The influence of bulk mass-influx transfer rate on heat transfer efficiency, effectiveness, and pressure drop of shell-tube heat exchangers has been analyzed. CFD results were compared with analytical solutions, and it shows a good agreement between them. It has been observed that pressure drop is minimum for the flow rate of 0.1 kg/s, and outlet temperatures at the shell side and tube side have been predicted to be 40.94°C and 63.63°C, respectively. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1024123X
Database :
Academic Search Index
Journal :
Mathematical Problems in Engineering
Publication Type :
Academic Journal
Accession number :
150613947
Full Text :
https://doi.org/10.1155/2021/6645128