Back to Search Start Over

Biomechanical forces enhance directed migration and activation of bone marrow-derived dendritic cells.

Authors :
Kang, Ji-Hun
Lee, Hyun Joo
Kim, Ok-Hyeon
Yun, Yong Ju
Seo, Young-Jin
Lee, Hyun Jung
Source :
Scientific Reports. 6/8/2021, Vol. 11 Issue 1, p1-11. 11p.
Publication Year :
2021

Abstract

Mechanical forces are pervasive in the inflammatory site where dendritic cells (DCs) are activated to migrate into draining lymph nodes. For example, fluid shear stress modulates the movement patterns of DCs, including directness and forward migration indices (FMIs), without chemokine effects. However, little is known about the effects of biomechanical forces on the activation of DCs. Accordingly, here we fabricated a microfluidics system to assess how biomechanical forces affect the migration and activity of DCs during inflammation. Based on the structure of edema, we proposed and experimentally analyzed a novel concept for a microchip model that mimicked such vascular architecture. The intensity of shear stress generated in our engineered chip was found as 0.2–0.6 dyne/cm2 by computational simulation; this value corresponded to inflammation in tissues. In this platform, the directness and FMIs of DCs were significantly increased, whereas the migration velocity of DCs was not altered by shear stress, indicating that mechanical stimuli influenced DC migration. Moreover, DCs with shear stress showed increased expression of the DC activation markers MHC class I and CD86 compared with DCs under static conditions. Taken together, these data suggest that the biomechanical forces are important to regulate the migration and activity of DCs. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20452322
Volume :
11
Issue :
1
Database :
Academic Search Index
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
150768062
Full Text :
https://doi.org/10.1038/s41598-021-91117-2