Back to Search Start Over

Deep learning stochastic processes with QCD phase transition.

Authors :
Lijia Jiang
Lingxiao Wang
Kai Zhou
Source :
Physical Review D: Particles, Fields, Gravitation & Cosmology. Jun2021, Vol. 103 Issue 11, p1-1. 1p.
Publication Year :
2021

Abstract

It is nontrivial to recognize phase transitions and track dynamics inside a stochastic process because of its intrinsic stochasticity. In this paper, we employ the deep learning method to classify the phase orders and predict the damping coefficient of fluctuating systems under Langevin description. As a concrete setup, we demonstrate this paradigm for the scalar condensation in QCD matter near the critical point, in which the order parameter of the chiral phase transition can be characterized in a 1+1-dimensional Langevin equation for the s field. In a supervised learning manner, convolutional neural networks accurately classify the first-order phase transition and crossover based on σ field configurations with fluctuations. Noise in the stochastic process does not significantly hinder the performance of the well-trained neural network for phase order recognition. For mixed dynamics with diverse dynamical parameters, we further devise and train the machine to predict the damping coefficients η in a broad range. The results show that it is robust to extract the dynamics from the bumpy field configurations. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
24700010
Volume :
103
Issue :
11
Database :
Academic Search Index
Journal :
Physical Review D: Particles, Fields, Gravitation & Cosmology
Publication Type :
Periodical
Accession number :
151296893
Full Text :
https://doi.org/10.1103/PhysRevD.103.116023