Back to Search Start Over

Techno-economic viability of energy storage concepts combined with a residential solar photovoltaic system: A case study from Finland.

Authors :
Puranen, Pietari
Kosonen, Antti
Ahola, Jero
Source :
Applied Energy. Sep2021, Vol. 298, pN.PAG-N.PAG. 1p.
Publication Year :
2021

Abstract

Solar photovoltaic systems have been growing in popularity in prosumer households as a means of increasing the share of renewable energy and decreasing electricity import. The available self-consumption is, however, limited by a temporal supply–demand imbalance. In this paper, options for improving the self-consumption of a prosumer household are studied by using three-year data sets of electricity import and export data from two distinct, real-life cases from Finland. Two separate approaches are analysed: the use of energy storages, physical or monetary, and changing of the electricity metering method. A switch of the electricity metering method from instant phasewise to hourly net metering was found to increase the self-sufficiency by about 3 to 5 percentage points and have an annual monetary benefit of a few tens of euros when a network storage was used. Considering the energy storage methods under study, the network energy storage was found to be more economically feasible than a physical or a virtual battery energy storage, even though a physical battery storage could increase the self-sufficiency as much as by 30 percentage points with a storage capacity of 20 kWh. The studied virtual battery concept was found to limit the profitable solar photovoltaic plant size if high enough storage capacity was not provided. When a physical battery energy storage is used, switching to hourly net metering does not add value to the system. A significant decrease in the system cost is required for a physical battery energy storage to be economically competitive in northern climate conditions. • Measured electricity flow is used to study energy storage concepts in Finland. • Change of electricity metering method can increase self-sufficiency up to 5 p.p. • Physical battery with 20 kWh capacity can increase self-sufficiency up to 30 p.p. • Network storage is currently the most profitable concept from the studied options. • The physical battery cycle rate will remain low even with small battery sizes. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
03062619
Volume :
298
Database :
Academic Search Index
Journal :
Applied Energy
Publication Type :
Academic Journal
Accession number :
151365823
Full Text :
https://doi.org/10.1016/j.apenergy.2021.117199