Back to Search Start Over

Regulating Electrocatalytic Oxygen Reduction Activity of a Metal Coordination Polymer via d–π Conjugation.

Authors :
Ni, Youxuan
Lin, Liu
Shang, Yuxin
Luo, Lin
Wang, Liubin
Lu, Yong
Li, Yixin
Yan, Zhenhua
Zhang, Kai
Cheng, Fangyi
Chen, Jun
Source :
Angewandte Chemie International Edition. 7/26/2021, Vol. 60 Issue 31, p16937-16941. 5p.
Publication Year :
2021

Abstract

Non‐noble transition metal complexes have attracted growing interest as efficient electrocatalysts for oxygen reduction reaction (ORR) while their activities still lack rational and effective regulation. Herein, we propose a d–π conjugation strategy for rough and fine tuning of ORR activity of TM‐BTA (TM=Mn/Fe/Co/Ni/Cu, BTA=1,2,4,5‐benzenetetramine) coordination polymers. By first‐principle calculations, we elucidate that the strong d–π conjugation elevates the dxz/dyz orbitals of TM centers to enhance intermediate adsorption and strengthens the electronic modulation effect from substitute groups on ligands. Based on this strategy, Co‐TABQ (tetramino benzoquinone) is found to approach the top of ORR activity volcano. The synthesized Co‐TABQ with atomically distributed Co on carbon nanotubes exhibits a half‐wave potential of 0.85 V and a specific current of 127 mA mgmetal−1 at 0.8 V, outperforming the benchmark Pt/C. The high activity, low peroxide yield, and considerable durability of Co‐BTA and Co‐TABQ promise their application in oxygen electrocatalysis. This study provides mechanistic insight into the rational design of transition metal complex catalysts. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14337851
Volume :
60
Issue :
31
Database :
Academic Search Index
Journal :
Angewandte Chemie International Edition
Publication Type :
Academic Journal
Accession number :
151754005
Full Text :
https://doi.org/10.1002/anie.202104494