Back to Search Start Over

Excess Heat Capacity in Mo/Au Transition Edge Sensor Bolometric Detectors.

Authors :
Brown, Ari
Brekosky, Regis
Colazo-Petit, Felipe
Greenhouse, Matthew
Hays-Wehle, James
Kutyrev, Alexander
Mikula, Vilem
Rostem, Karwan
Wollack, Edward
Moseley, Samuel
Source :
IEEE Transactions on Applied Superconductivity. Jun2021, Vol. 31 Issue 4, p1-4. 4p.
Publication Year :
2021

Abstract

Excess heat capacity in a bolometric detector has the consequence of increasing or leading to multiple device time constants.  The Mo/Au bilayer transition edge sensor (TES) bolometric detectors initially fabricated for the high resolution mid-infrared spectrometer (HIRMES) exhibited two response thermalization scales, one of which is a few times longer than estimates based upon the properties of the bulk materials employed in the design. The relative contribution of this settling time to the overall time response of the detectors is roughly proportional to the pixel area, which ranges between ∼0.3 and 2.6 mm2.  Use of laser ablation to remove sections of the silicon membranes comprising the pixels results in a detector response with a smaller contribution from the secondary time constant.  Additional information about the nature of this excess heat capacity is gleaned from glancing incidence X-ray diffraction, which reveals the presence of molybdenum silicides near the silicon surface which is a consequence of the bi-layer deposition.  Quantitative analysis of the concentration of excess molybdenum, estimated with secondary ion mass spectroscopy, is commensurate to the additional heat capacity needed to explain the anomalous time response of the detectors. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10518223
Volume :
31
Issue :
4
Database :
Academic Search Index
Journal :
IEEE Transactions on Applied Superconductivity
Publication Type :
Academic Journal
Accession number :
151778013
Full Text :
https://doi.org/10.1109/TASC.2021.3065922