Back to Search Start Over

Identification of elastic properties of interphase and interface in graphene-polymer nanocomposites by atomistic simulations.

Authors :
Lu, Xiaoxin
Detrez, Fabrice
Yvonnet, Julien
Bai, Jinbo
Source :
Composites Science & Technology. Sep2021, Vol. 213, pN.PAG-N.PAG. 1p.
Publication Year :
2021

Abstract

This article tackles the problem of identification of elastic continuum model by atomistic simulations for graphene polymer nanocomposite. The Atomistic Local IdentificAtion of Stiffness method, so-called ALIAS method, is developed to estimate the local stiffness tensor at all points of polymer graphene laminate nanocomposite. Results suggest that the graphene can be modeled at continuum scale by a general imperfect interface with zero thickness. Moreover, the identification procedure reveals the existence of interphase on either side of the graphene with a thickness of 1 nm, which is one and a half times stiffer than the polymer bulk matrix. The identified continuum model is used to study the effective elastic properties of nanocomposites with sandwich microstructure. This study at continuum scale reveals a softening effect due the very low stiffness of slip along graphene plane. The softening due to the interfaces is preponderant in relation to the interphase stiffening. Finally, the continuum model also suggests that the wrinkling of graphene increases the stiffness of nanocomposites. [Display omitted] • Identification of a continuum elastic model of nanocomposite by atomistic simulations. • Existence of interphase one and a half times stiffer with a thickness of 1 nm. • The interface between graphene and polymer has a softening effect. • The interface softening is preponderant in relation to the interphase stiffening. • Wrinkling of graphene increases the stiffness of graphene polymer nanocomposite. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02663538
Volume :
213
Database :
Academic Search Index
Journal :
Composites Science & Technology
Publication Type :
Academic Journal
Accession number :
151833384
Full Text :
https://doi.org/10.1016/j.compscitech.2021.108943