Back to Search Start Over

Vertical profiles of leaf photosynthesis and leaf traits, and soil nutrients in two tropical rainforests in French Guiana before and after a three-year nitrogen and phosphorus addition experiment.

Authors :
Verryckt, Lore Talle
Vicca, Sara
Langenhove, Leandro Van
Stahl, Clément
Asensio, Dolores
Urbina, Ifigenia
Ogaya, Romà
Llusià, Joan
Grau, Oriol
Peguero, Guille
Gargallo-Garriga, Albert
Courtois, Elodie A.
Margalef, Olga
Portillo-Estrada, Miguel
Ciais, Philippe
Obersteiner, Michael
Fuchslueger, Lucia
Lugli, Laynara F.
Fernandez-Garberí, Pere-Roc
Vallicrosa, Helena
Source :
Earth System Science Data Discussions. 8/13/2021, Vol. 2021, p1-20. 20p.
Publication Year :
2021

Abstract

Terrestrial biosphere models typically use the biochemical model of Farquhar, von Caemmerer and Berry (1980) to simulate photosynthesis, which requires accurate values of photosynthetic capacity of different biomes. However, data on tropical forests are sparse and highly variable due to the high species diversity, and it is still highly uncertain how these tropical forests respond to nutrient limitation in terms of C uptake. Tropical forests often grow on phosphorus (P)-poor soils and are, in general, assumed to be P- rather than nitrogen (N)-limited. However, the relevance of P as a control of photosynthetic capacity is still debated. Here, we provide a comprehensive dataset of vertical profiles of photosynthetic capacity and important leaf traits, including leaf N and P concentrations, from two three-year, large-scale nutrient addition experiments conducted in two tropical rainforests in French Guiana. These data present a unique source of information to further improve model representations of the roles of N, P, and other leaf nutrients, in photosynthesis in tropical forests. To further facilitate the use of our data in syntheses and model studies, we provide an elaborate list of ancillary data, including important soil properties and nutrients, along with the leaf data. As environmental drivers are key to improve our understanding of carbon (C)-nutrient cycle interactions, this comprehensive dataset will aid to further enhance our understanding of how nutrient availability interacts with C uptake in tropical forests. The data are available at DOI 10.5281/zenodo.4719242 (Verryckt, 2021). [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
18663591
Volume :
2021
Database :
Academic Search Index
Journal :
Earth System Science Data Discussions
Publication Type :
Academic Journal
Accession number :
151995739
Full Text :
https://doi.org/10.5194/essd-2021-142